VinayHajare's picture
Update app.py
4c55a36 verified
raw
history blame
1.85 kB
import os
import random
import gradio as gr
import requests
from PIL import Image
from utils import read_css_from_file
from inference import generate_image_from_text, generate_image_from_text_with_persistent_storage
# Read CSS from file
css = read_css_from_file("style.css")
DESCRIPTION = '''
<div id="content_align">
<span style="color:darkred;font-size:32px:font-weight:bold">
EfficientCLIP-GAN Models Image Generation Demo
</span>
</div>
<div id="content_align">
<span style="color:blue;font-size:16px:font-weight:bold">
Generate images directly from text prompts
</span>
</div>
<div id="content_align" style="margin-top: 10px;">
</div>
'''
# Creating Gradio interface
with gr.Blocks(css=css) as app:
gr.Warning("This πŸ’» demo uses the EfficientCLIP-GAN model which is trained on CUB dataset 🐦πŸ₯.\nKeep your prompt coherent to the birds domain.\nIf you like the demo, don't forget to click on the like πŸ’– button.")
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(label="Input Prompt", placeholder="", lines=3)
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Row():
with gr.Column():
image_output1 = gr.Image(type="pil", format = "jpeg", label="Generated Image 1")
image_output2 = gr.Image(type="pil", format = "jpeg", label="Generated Image 2")
with gr.Column():
image_output3 = gr.Image(type="pil", format = "jpeg", label="Generated Image 3")
image_output4 = gr.Image(type="pil", format = "jpeg", label="Generated Image 4")
generate_button.click(generate_image_from_text, inputs=[text_prompt], outputs=[image_output1, image_output2, image_output3, image_output4])
# Launch the app
app.launch()