import os import sys import io import torch import torchvision import clip import numpy as np from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms.functional import to_pil_image from utils import load_model_weights from model import NetG, CLIP_TXT_ENCODER # checking the device device = 'cuda:0' if torch.cuda.is_available() else 'cpu' # Getting the HF token HF_TOKEN = os.getenv("HF_TOKEN") # repository of the model repo_id = "VinayHajare/EfficientCLIP-GAN" cub_model = "saved_models/state_epoch_1480.pth" cc12m_model = "saved_models/EfficientCLIP-GAN-CC12M.pth" # clip model wrapped with the custom encoder clip_text = "ViT-B/32" clip_model, preprocessor = clip.load(clip_text, device=device) clip_model = clip_model.eval() text_encoder = CLIP_TXT_ENCODER(clip_model).to(device) # loading the models from the repository and extracting the generator model cub_model_path = hf_hub_download(repo_id = repo_id, filename = cub_model, token = HF_TOKEN) checkpoint_cub = torch.load(cub_model_path, map_location=torch.device(device)) cc12m_model_path = hf_hub_download(repo_id = repo_id, filename = cc12m_model, token = HF_TOKEN) checkpoint_cc12m = torch.load(cc12m_model_path, map_location=torch.device(device)) # Create a new Generator model and initialize it with the pre-trained weights netG = NetG(64, 100, 512, 256, 3, False, clip_model).to(device) netG1 = NetG(64, 100, 512, 256, 3, False, clip_model).to(device) cub = load_model_weights(netG, checkpoint_cub['model']['netG'], multi_gpus=False) cc12m = load_model_weights(netG1, checkpoint_cc12m['model']['netG'], multi_gpus=False) # Function to generate images from text def generate_image_from_text(caption, model, batch_size=4): if model == "CUB": generator = cub else: generator = cc12m # Create the noise tensor noise = torch.randn((batch_size, 100)).to(device) with torch.no_grad(): # Tokenize caption tokenized_text = clip.tokenize([caption]).to(device) # Extract the sentence and word embedding from Custom CLIP ENCODER sent_emb, word_emb = text_encoder(tokenized_text) # Repeat the sentence embedding to match the batch size sent_emb = sent_emb.repeat(batch_size, 1) # generate the images generated_images = generator(noise, sent_emb, eval=True).float() # Convert the tensor images to PIL format pil_images = [] for image_tensor in generated_images.unbind(0): # Rescale tensor values to [0, 1] image_tensor = image_tensor.data.clamp(-1, 1) image_tensor = (image_tensor + 1.0) / 2.0 # Convert tensor to numpy array image_numpy = image_tensor.permute(1, 2, 0).cpu().numpy() # Clip numpy array values to [0, 1] image_numpy = np.clip(image_numpy, 0, 1) # Create a PIL image from the numpy array pil_image = Image.fromarray((image_numpy * 255).astype(np.uint8)) pil_images.append(pil_image) return pil_images # Function to generate images from text def generate_image_from_text_with_persistent_storage(caption, model, batch_size=4): if model == "CUB": generator = cub else: generator = cc12m # Create the noise tensor noise = torch.randn((batch_size, 100)).to(device) with torch.no_grad(): # Tokenize caption tokenized_text = clip.tokenize([caption]).to(device) # Extract the sentence and word embedding from Custom CLIP ENCODER sent_emb, word_emb = text_encoder(tokenized_text) # Repeat the sentence embedding to match the batch size sent_emb = sent_emb.repeat(batch_size, 1) # generate the images generated_images = generator(noise, sent_emb, eval=True).float() # Create a permanent directory if it doesn't exist permanent_dir = "generated_images" if not os.path.exists(permanent_dir): os.makedirs(permanent_dir) image_paths = [] for idx, image_tensor in enumerate(generated_images.unbind(0)): # Save the image tensor to a permanent file image_path = os.path.join(permanent_dir, f"image_{idx}.png") torchvision.utils.save_image(image_tensor.data, image_path, value_range=(-1, 1), normalize=True) image_paths.append(image_path) return image_paths