Spaces:
Sleeping
Sleeping
File size: 12,965 Bytes
4d5c005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
from flask import Flask, render_template, request, jsonify, redirect, url_for, flash, session from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user from flask_wtf.csrf import CSRFProtect from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import DataRequired from werkzeug.security import generate_password_hash, check_password_hash import arxiv import requests import PyPDF2 from io import BytesIO from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain_community.embeddings import HuggingFaceEmbeddings import numpy as np from concurrent.futures import ThreadPoolExecutor, TimeoutError from functools import lru_cache import time import os from dotenv import load_dotenv import json from datetime import datetime from flask_sqlalchemy import SQLAlchemy from config import Config # Load environment variables load_dotenv() # Initialize Flask extensions db = SQLAlchemy() login_manager = LoginManager() def create_app(): app = Flask(__name__) app.config.from_object(Config) # Initialize extensions db.init_app(app) login_manager.init_app(app) login_manager.login_view = 'login' with app.app_context(): # Import routes after db initialization from routes import init_routes init_routes(app) # Create database tables db.create_all() # Test database connection try: version = db.session.execute('SELECT VERSION()').scalar() print(f"Connected to PostgreSQL: {version}") except Exception as e: print(f"Database connection error: {str(e)}") raise e return app # Initialize CSRF protection csrf = CSRFProtect() csrf.init_app(app) # Initialize Groq groq_api_key = os.getenv('GROQ_API_KEY') llm = ChatGroq( temperature=0.1, groq_api_key=groq_api_key, model_name="mixtral-8x7b-32768" ) # Initialize embeddings embeddings_model = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) # Constants MAX_CHUNKS = 50 MAX_RESPONSE_LENGTH = 4000 CACHE_DURATION = 3600 # 1 hour in seconds # Form Classes class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Login') class RegisterForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Register') # User class class User(UserMixin): def __init__(self, user_id, username): self.id = user_id self.username = username @staticmethod def get(user_id): users = load_users() user_data = users.get(str(user_id)) if user_data: return User(user_id=user_data['id'], username=user_data['username']) return None # User management functions def load_users(): try: with open('users.json', 'r') as f: return json.load(f) except FileNotFoundError: return {} def save_users(users): with open('users.json', 'w') as f: json.dump(users, f) @login_manager.user_loader def load_user(user_id): return User.get(user_id) # PDF Processing and Analysis def process_pdf(pdf_url): try: print(f"Starting PDF processing for: {pdf_url}") response = requests.get(pdf_url, timeout=30) response.raise_for_status() pdf_file = BytesIO(response.content) pdf_reader = PyPDF2.PdfReader(pdf_file) # Clean and normalize the text text = " ".join( page.extract_text().encode('ascii', 'ignore').decode('ascii') for page in pdf_reader.pages ) if not text.strip(): return {'error': 'No text could be extracted from the PDF'} text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len, separators=["\n\n", "\n", " ", ""] ) chunks = text_splitter.split_text(text)[:MAX_CHUNKS] analysis = generate_analysis(chunks) return { 'success': True, 'analysis': analysis } except Exception as e: return {'error': f"PDF processing failed: {str(e)}"} def generate_analysis(chunks): analysis_prompts = { 'executive_summary': "Provide a concise executive summary of this research paper.", 'problem_analysis': "What is the main research problem and objectives?", 'methodology': "Describe the key methodology and approach.", 'findings': "What are the main findings and conclusions?", 'contributions': "What are the key contributions of this work?" } analysis_results = {} for aspect, prompt in analysis_prompts.items(): try: # Clean and join the chunks context = "\n\n".join( chunk.encode('ascii', 'ignore').decode('ascii') for chunk in chunks[:3] ) response = llm.invoke( f"""Based on the following context from a research paper, {prompt} Context: {context} Please provide a clear and specific response.""" ) analysis_results[aspect] = response.content[:MAX_RESPONSE_LENGTH] except Exception as e: analysis_results[aspect] = f"Analysis failed: {str(e)}" return analysis_results # Routes @app.route('/') @login_required def index(): return render_template('index.html') @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('index')) form = LoginForm() if form.validate_on_submit(): username = form.username.data password = form.password.data users = load_users() user_found = None for user_id, user_data in users.items(): if user_data['username'] == username: user_found = user_data break if user_found and check_password_hash(user_found['password_hash'], password): user = User(user_id=user_found['id'], username=username) login_user(user, remember=True) return redirect(url_for('index')) flash('Invalid username or password') return render_template('login.html', form=form) @app.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('index')) form = RegisterForm() if form.validate_on_submit(): username = form.username.data password = form.password.data users = load_users() if any(user['username'] == username for user in users.values()): flash('Username already exists') return render_template('register.html', form=form) user_id = str(len(users) + 1) users[user_id] = { 'id': user_id, 'username': username, 'password_hash': generate_password_hash(password) } save_users(users) user = User(user_id=user_id, username=username) login_user(user) return redirect(url_for('index')) return render_template('register.html', form=form) @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route('/search', methods=['POST']) @login_required def search(): try: data = request.get_json() paper_name = data.get('paper_name') sort_by = data.get('sort_by', 'relevance') max_results = data.get('max_results', 10) if not paper_name: return jsonify({'error': 'No search query provided'}), 400 # Map sort_by to arxiv.SortCriterion sort_mapping = { 'relevance': arxiv.SortCriterion.Relevance, 'lastUpdated': arxiv.SortCriterion.LastUpdatedDate, 'submitted': arxiv.SortCriterion.SubmittedDate } sort_criterion = sort_mapping.get(sort_by, arxiv.SortCriterion.Relevance) # Perform the search search = arxiv.Search( query=paper_name, max_results=max_results, sort_by=sort_criterion ) results = [] for paper in search.results(): results.append({ 'title': paper.title, 'authors': ', '.join(author.name for author in paper.authors), 'abstract': paper.summary, 'pdf_link': paper.pdf_url, 'arxiv_link': paper.entry_id, 'published': paper.published.strftime('%Y-%m-%d'), 'category': paper.primary_category, 'comment': paper.comment if hasattr(paper, 'comment') else None, 'doi': paper.doi if hasattr(paper, 'doi') else None }) return jsonify(results) except Exception as e: print(f"Search error: {str(e)}") return jsonify({'error': f'Failed to search papers: {str(e)}'}), 500 @app.route('/perform-rag', methods=['POST']) @login_required def perform_rag(): try: pdf_url = request.json.get('pdf_url') if not pdf_url: return jsonify({'error': 'PDF URL is required'}), 400 result = process_pdf(pdf_url) if 'error' in result: return jsonify({'error': result['error']}), 500 return jsonify(result) except Exception as e: return jsonify({'error': str(e)}), 500 @app.route('/chat-with-paper', methods=['POST']) @login_required def chat_with_paper(): try: pdf_url = request.json.get('pdf_url') question = request.json.get('question') if not pdf_url or not question: return jsonify({'error': 'PDF URL and question are required'}), 400 # Get PDF text and create chunks response = requests.get(pdf_url, timeout=30) response.raise_for_status() pdf_file = BytesIO(response.content) pdf_reader = PyPDF2.PdfReader(pdf_file) text = " ".join(page.extract_text() for page in pdf_reader.pages) if not text.strip(): return jsonify({'error': 'No text could be extracted from the PDF'}) # Create text chunks text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text)[:MAX_CHUNKS] # Generate embeddings for chunks chunk_embeddings = embeddings_model.embed_documents(chunks) # Generate embedding for the question question_embedding = embeddings_model.embed_query(question) # Find most relevant chunks using cosine similarity similarities = [] for chunk_embedding in chunk_embeddings: similarity = np.dot(question_embedding, chunk_embedding) / ( np.linalg.norm(question_embedding) * np.linalg.norm(chunk_embedding) ) similarities.append(similarity) # Get top 3 most relevant chunks top_chunk_indices = np.argsort(similarities)[-3:][::-1] relevant_chunks = [chunks[i] for i in top_chunk_indices] # Construct prompt with relevant context context = "\n\n".join(relevant_chunks) prompt = f"""Based on the following relevant excerpts from the research paper, please answer this question: {question} Context from paper: {context} Please provide a clear, specific, and accurate response based solely on the information provided in these excerpts. If the answer cannot be fully determined from the given context, please indicate this in your response.""" # Generate response using Groq response = llm.invoke(prompt) # Format and return response formatted_response = response.content.strip() # Add source citations source_info = "\n\nThis response is based on specific sections from the paper." return jsonify({ 'response': formatted_response + source_info, 'relevance_scores': [float(similarities[i]) for i in top_chunk_indices] }) except Exception as e: print(f"Chat error: {str(e)}") return jsonify({'error': f'Failed to process request: {str(e)}'}), 500 if __name__ == '__main__': app.run(debug=True) |