Spaces:
Runtime error
Runtime error
import os | |
import subprocess | |
# Ensure poppler-utils and tesseract-ocr are installed | |
def install_dependencies(): | |
try: | |
subprocess.run(["/bin/bash", "setup.sh"], check=True) | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred while installing dependencies: {e}") | |
raise | |
install_dependencies() | |
import cv2 as cv | |
import numpy as np | |
import pytesseract | |
from pdf2image import convert_from_path | |
import gradio as gr | |
import json | |
# Function to rescale the frame | |
def rescaleFrame(frame, scale=0.75): | |
width = int(frame.shape[1] * scale) | |
height = int(frame.shape[0] * scale) | |
dimensions = (width, height) | |
return cv.resize(frame, dimensions, interpolation=cv.INTER_AREA) | |
# Function to apply gamma correction | |
def apply_gamma(image, gamma=1.0): | |
invGamma = 1.0 / gamma | |
table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") | |
return cv.LUT(image, table) | |
# Function to apply adaptive thresholding | |
def adaptive_threshold(image): | |
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) | |
return cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2) | |
# Function to apply edge detection | |
def edge_detection(image): | |
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) | |
return cv.Canny(gray, 50, 150) | |
# Function to apply morphological transformations | |
def morphological_transformation(image): | |
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) | |
_, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) | |
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) | |
return cv.morphologyEx(binary, cv.MORPH_CLOSE, kernel) | |
# Function to process image for text extraction | |
def process_image(img, method='default'): | |
resized_image = rescaleFrame(img) | |
if method == 'default': | |
gray = cv.cvtColor(resized_image, cv.COLOR_BGR2GRAY) | |
blur = cv.GaussianBlur(gray, (3, 3), 0) | |
gamma_corrected = apply_gamma(blur, gamma=0.3) | |
_, thresh = cv.threshold(gamma_corrected, 0, 255, cv.THRESH_BINARY + cv.THRESH_OTSU) | |
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3)) | |
return cv.morphologyEx(thresh, cv.MORPH_CLOSE, kernel) | |
elif method == 'adaptive_threshold': | |
return adaptive_threshold(resized_image) | |
elif method == 'edge_detection': | |
return edge_detection(resized_image) | |
elif method == 'morphological': | |
return morphological_transformation(resized_image) | |
# Function to extract text from processed image | |
def extract_text_from_image(image, langs='tel'): | |
return pytesseract.image_to_string(image, lang=langs) | |
output_dir = "output" | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
all_texts = {} | |
def save_and_next(page_num, text, extracted_texts, original_images, total_pages): | |
page_num = int(page_num) # Ensure page_num is an integer | |
total_pages = int(total_pages) # Ensure total_pages is an integer | |
formatted_text = { | |
f"Page number: {page_num}": { | |
"Content": [ | |
line for line in text.split('\n') if line.strip() != '' | |
] | |
} | |
} | |
all_texts.update(formatted_text) | |
json_path = os.path.join(output_dir, "all_texts.json") | |
with open(json_path, 'w', encoding='utf-8') as f: | |
json.dump(all_texts, f, ensure_ascii=False, indent=4) | |
next_page_num = page_num + 1 # Increment to next page | |
if next_page_num <= total_pages: | |
next_page_image = original_images[next_page_num - 1] | |
methods = ['default', 'adaptive_threshold', 'edge_detection', 'morphological'] | |
best_text = "" | |
max_confidence = -1 | |
for method in methods: | |
processed_image = process_image(next_page_image, method=method) | |
text = extract_text_from_image(processed_image, langs='tel') | |
confidence = len(text) | |
if confidence > max_confidence: | |
max_confidence = confidence | |
best_text = text | |
extracted_texts.append(best_text) | |
return gr.update(value=best_text), next_page_num, gr.update(value=next_page_image, height=None, width=None), json_path | |
else: | |
return "All pages processed", page_num, None, json_path | |
def skip_page(page_num, extracted_texts, original_images, total_pages): | |
next_page_num = int(page_num) + 1 # Ensure page_num is an integer and increment to next page | |
total_pages = int(total_pages) # Ensure total_pages is an integer | |
if next_page_num <= total_pages: | |
next_page_image = original_images[next_page_num - 1] | |
methods = ['default', 'adaptive_threshold', 'edge_detection', 'morphological'] | |
best_text = "" | |
max_confidence = -1 | |
for method in methods: | |
processed_image = process_image(next_page_image, method=method) | |
text = extract_text_from_image(processed_image, langs='tel') | |
confidence = len(text) | |
if confidence > max_confidence: | |
max_confidence = confidence | |
best_text = text | |
extracted_texts.append(best_text) | |
return gr.update(value=best_text), next_page_num, gr.update(value=next_page_image, height=None, width=None) | |
else: | |
return "All pages processed", page_num, None | |
def upload_pdf(pdf): | |
pdf_path = pdf.name | |
pages = convert_from_path(pdf_path) | |
first_page = np.array(pages[0]) | |
methods = ['default', 'adaptive_threshold', 'edge_detection', 'morphological'] | |
best_text = "" | |
max_confidence = -1 | |
for method in methods: | |
processed_image = process_image(first_page, method=method) | |
text = extract_text_from_image(processed_image, langs='tel') | |
confidence = len(text) | |
if confidence > max_confidence: | |
max_confidence = confidence | |
best_text = text | |
original_images = [np.array(page) for page in pages] | |
extracted_texts = [best_text] | |
return gr.update(value=original_images[0], height=None, width=None), gr.update(value=best_text), 1, extracted_texts, original_images, len(pages) | |
def navigate_to_page(page_num, extracted_texts, original_images): | |
if 0 <= page_num - 1 < len(original_images): | |
return gr.update(value=original_images[page_num - 1], height=None, width=None), gr.update(value=extracted_texts[page_num - 1]), page_num | |
else: | |
return gr.update(value="Invalid Page Number"), None, page_num | |
def display_pdf_and_text(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## PDF Viewer and Text Editor") | |
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"]) | |
with gr.Row(): | |
image_output = gr.Image(label="Page Image", type="numpy") | |
text_editor = gr.Textbox(label="Extracted Text", lines=10, interactive=True) | |
page_num = gr.Number(value=1, label="Page Number", visible=True) | |
extracted_texts = gr.State() | |
original_images = gr.State() | |
total_pages = gr.State() | |
save_next_button = gr.Button("Save and Next") | |
skip_button = gr.Button("Skip") | |
pdf_input.upload(upload_pdf, inputs=pdf_input, outputs=[image_output, text_editor, page_num, extracted_texts, original_images, total_pages]) | |
save_next_button.click(fn=save_and_next, | |
inputs=[page_num, text_editor, extracted_texts, original_images, total_pages], | |
outputs=[text_editor, page_num, image_output, gr.File(label="Download JSON")]) | |
skip_button.click(fn=skip_page, | |
inputs=[page_num, extracted_texts, original_images, total_pages], | |
outputs=[text_editor, page_num, image_output]) | |
page_buttons = gr.Row() | |
def update_page_buttons(total_pages, extracted_texts, original_images): | |
page_buttons.clear() # Clear previous buttons if any | |
buttons = [] | |
for i in range(1, total_pages + 1): | |
button = gr.Button(str(i), variant="primary", size="small") | |
button.click(navigate_to_page, inputs=[i, extracted_texts, original_images], outputs=[image_output, text_editor, page_num]) | |
buttons.append(button) | |
return buttons | |
total_pages.change(fn=update_page_buttons, inputs=[total_pages, extracted_texts, original_images], outputs=[page_buttons]) | |
return demo | |
iface = display_pdf_and_text() | |
iface.launch() | |