Spaces:
Running
Running
File size: 14,709 Bytes
4615690 6ac5190 4615690 2fd5de9 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 4ac07e8 6ac5190 4ac07e8 6ac5190 4615690 6ac5190 da8eb93 6ac5190 482c276 6ac5190 da8eb93 6ac5190 4615690 12db954 4615690 6ac5190 a6f739a 6ac5190 30e9946 6ac5190 3847ff4 30e9946 4da30c6 30e9946 4da30c6 30e9946 4da30c6 d6b48f7 32953b6 d6b48f7 6ac5190 d6b48f7 6ac5190 4da30c6 6ac5190 dd3b789 12db954 5298c06 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 b6c265e 6ac5190 4615690 6ac5190 041ccdd 6ac5190 041ccdd 6ac5190 3847ff4 ee0a2fc 2cd12cb 6ac5190 041ccdd 6ac5190 d6b48f7 6ac5190 041ccdd 6ac5190 041ccdd 6ac5190 041ccdd 6ac5190 4615690 6ac5190 4615690 d6b48f7 6ac5190 d6b48f7 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 4615690 6ac5190 2fd5de9 4615690 6ac5190 da8eb93 6ac5190 482c276 6afa43e 6ac5190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import asyncio
import subprocess
import json
import concurrent.futures
from fastapi import FastAPI, WebSocket
from fastapi.responses import HTMLResponse
from jinja2 import Template
from llama_cpp import Llama
from contextlib import asynccontextmanager
import logging
from pathlib import Path
# Set up logging
logging.basicConfig(level=logging.INFO)
# Set up the log file and empty it
log_path = Path("interaction_history.log")
log_path.touch(exist_ok=True)
with log_path.open('w') as f:
pass # Do nothing, just empty the file
# Global variable to keep track of the last read position in the log file
last_read_position = 0
# Define the models and their paths
models = {
"production": {
"file": "DeepSeek-R1-Distill-Llama-8B-Q4_K_L.gguf",
"alias": "R1Llama8BQ4L",
"template": "app/templates/Llama8bq4k.html"
},
"development": {
"file": "DeepSeek-R1-Distill-Qwen-1.5B-Q2_K.gguf",
"alias": "R1Qwen1.5BQ2",
"template": "app/templates/Qwen5bq2k.html"
},
}
model_in_use = models["production"]
with open(model_in_use["template"], "r") as jinja_template:
CHAT_TEMPLATE = jinja_template.read()
#with open("app/templates/default.html", "r") as jinja_template:
# CHAT_TEMPLATE = jinja_template.read()
# Define the shell execution tool
def execute_shell(arguments):
"""Execute a shell command."""
try:
args = json.loads(arguments)
command = args.get("command", "")
if not command:
return json.dumps({"error": "No command provided."})
process = subprocess.run(
command,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
return json.dumps({"stdout": process.stdout, "stderr": process.stderr})
except Exception as e:
return json.dumps({"error": str(e)})
# Define the tools available to the assistant
tools = {
"shell": {
"description": "Execute shell commands.",
"example_input": '{"command": string"..."}',
"example_output": '{"stdout": "...", "stderr": "..."}',
"function": execute_shell,
},
}
tools_list = [
{
"type": "function",
"function": {
"name": "shell",
"description": "Execute shell commands.",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The shell command to execute."
}
},
"required": ["command"]
}
}
}
]
expected_tool_usage = """\n\nYou are expected to demarcate tool calls between markers like:
<|tool▁calls▁begin|> ... <|tool▁calls▁end|>
and each individual call between:
<|tool▁call▁begin|> ... <|tool▁sep|> ... "```json" ... "```"
\nBut you should not make more than one call at a time.\n
For example, to download the Google homepage, you could use the `wget` command.
<|tool_calls_begin|>
<|tool_call_begin|>
{
"tool": "shell",
"arguments": "{\"command\": \"wget google.com\"}"
}
<|tool_sep|>
<|tool_call_end|>
<|tool_calls_end|>
"""
text_prompt = """You are an AI model expert in computational biology performing autonomous real research.
Your goal is to discover something new and relevant in the field of nerve regeneration.
You can execute shell commands in the Docker container with the following tools:\n\n"""
custom_prompt = """You are an AI model expert in computational biology performing autonomous real research.
Your goal is to discover something new and relevant in the field of nerve regeneration.
You can execute shell commands using a Json:
```json
{
"tool": "shell",
"arguments": '{\"command\": "<INSERT-YOUR-COMMAND>"}'
}
```
"""
# Dynamically generate the system prompt based on available tools.
def generate_system_prompt(tools):
tool_descriptions = []
for tool_name, tool_data in tools.items():
description = tool_data.get("description", "No description available.")
example_input = tool_data.get("example_input", "{}")
example_output = tool_data.get("example_output", "{}")
tool_descriptions.append(
f"""- **{tool_name}**:
- Description: {description}
- Input: {example_input}
- Output: {example_output}"""
)
return (
text_prompt
+ "\n\n".join(tool_descriptions)
+ expected_tool_usage
)
# Create the system prompt.
system_prompt = generate_system_prompt(tools)
with log_path.open("a") as f:
#f.write("System prompt:\n\n"+system_prompt+"\n\n")
f.write("System prompt:\n"+custom_prompt+"\n\n")
# Parse out any tool calls embedded in the model's output.
def extract_tool_calls(response_text):
"""
Parse tool calls from model output.
The model is expected to demarcate tool calls between markers like:
<|tool▁calls▁begin|> ... <|tool▁calls▁end|>
and each individual call between:
<|tool▁call▁begin|> ... <|tool▁sep|> ... "```json" ... "```"
"""
if "<|tool▁calls▁begin|>" not in response_text:
return []
tool_calls_part = response_text.split("<|tool▁calls▁begin|>")[1]
tool_calls_part = tool_calls_part.split("<|tool▁calls▁end|>")[0]
tool_calls = tool_calls_part.split("<|tool▁call▁begin|>")
parsed_tool_calls = []
for tool_call in tool_calls:
tool_call = tool_call.strip()
if tool_call:
try:
tool_type, tool_name_and_args = tool_call.split("<|tool▁sep|>")
tool_name, tool_args = tool_name_and_args.split("\n```json\n", 1)
tool_args = tool_args.split("\n```")[0]
parsed_tool_calls.append({
"type": tool_type,
"name": tool_name.strip(),
"arguments": tool_args.strip()
})
except ValueError:
logging.warning("Failed to parse tool call: %s", tool_call)
return parsed_tool_calls
def process_tool_call(tool_call):
"""Execute the requested tool and return its output."""
tool_name = tool_call["name"]
tool_args = tool_call["arguments"]
if tool_name in tools:
tool_function = tools[tool_name]["function"]
return tool_function(tool_args)
else:
return json.dumps({"error": f"Tool {tool_name} not found."})
#
# Helper: Wrap a synchronous generator as an asynchronous generator.
#
async def async_generator_from_sync(sync_gen_func, *args, **kwargs):
"""
Runs a synchronous generator function in a thread and yields items asynchronously.
"""
loop = asyncio.get_running_loop()
q = asyncio.Queue()
def producer():
try:
for item in sync_gen_func(*args, **kwargs):
loop.call_soon_threadsafe(q.put_nowait, item)
except Exception as e:
loop.call_soon_threadsafe(q.put_nowait, e)
finally:
# Signal the end of iteration with a sentinel (None)
loop.call_soon_threadsafe(q.put_nowait, None)
with concurrent.futures.ThreadPoolExecutor() as executor:
logging.info("Inside executor")
executor.submit(producer)
while True:
item = await q.get()
if item is None:
break
if isinstance(item, Exception):
raise item
yield item
#
# Background response generator without requiring a WebSocket.
#
async def generate_response_background(conversation):
logging.info(f"Starting generation with conversation: {conversation}")
async for token_chunk in async_generator_from_sync(
llm.create_chat_completion,
messages=conversation,
stream=True,
tools=tools_list,
max_tokens=2048,
repeat_penalty=1.1
):
logging.debug(f"Raw token chunk: {json.dumps(token_chunk, indent=2)}")
yield token_chunk
await asyncio.sleep(0)
#
# Main research loop running continuously in the background.
#
async def run_research_forever():
global log_path
logging.info("🚀 Autonomous computational biology research initiated!")
with log_path.open("a") as f:
f.write("🚀 Autonomous computational biology research initiated!\n")
conversation = [{"role": "system", "content": custom_prompt}]
while True:
full_response = ""
try:
async for token in generate_response_background(conversation):
# Safely extract delta
delta = token["choices"][0].get("delta", {})
# Handle text content
token_text = delta.get("content", "") # Default to empty string
full_response += token_text
# Handle tool calls (critical for container environment)
if "tool_calls" in delta:
tool_calls = delta["tool_calls"]
# Process tool call deltas here (append to full_response or log)
tool_call_str = json.dumps(tool_calls)
full_response += f"\n🔧 Tool Call: {tool_call_str}\n"
# Logging remains the same
with open(log_path, "a") as f:
f.write(token_text)
f.flush()
# Check for finish reason
if token['choices'][0].get("finish_reason"):
# The presence of a finish reason (like "stop") indicates that generation is complete.
# Append the assistant's response to the conversation log.
conversation.append({"role": "assistant", "content": full_response})
try:
tool_output = parse_tool_calls(full_response)
conversation.append({"role": "tool", "content": tool_output})
except Exception as e:
logging.error(f"🛠️ Tool execution failed: {e} attempting tool execution fallback")
try:
tool_output = parse_tool_calls_fallback(full_response)
conversation.append({"role": "tool", "content": tool_output})
except:
logging.error(f"🛠️ Tool execution fallback also failed: {e}")
conversation.append({"role": "system", "content": """Error in function calling.
You must work towards your goal using the proper format"""+custom_prompt})
continue
except Exception as e:
logging.error(f"Autonomous research error during response generation: {e}")
continue
# Delay before the next query iteration.
await asyncio.sleep(1)
def parse_tool_calls_fallback(full_response):
tool_call = full_response.split("```json")[1]
tool_call = tool_call.split("```")[0]
tool_call = tool_output.strip()
tool_output = process_tool_call({tool_call})
return tool_output
def parse_tool_calls(full_response):
# Check for tool calls in the response and process them.
logging.info(f"Full response: {full_response}")
tool_calls = extract_tool_calls(full_response)
logging.info(f"Tool calls: {tool_calls}")
for tool_call in tool_calls:
tool_output = process_tool_call(tool_call)
logging.info(f"🔧 Tool Execution: {tool_output}")
with log_path.open("a") as f:
f.write(f"🔧 Tool Execution: {tool_output}\n")
return tool_output
# Automatically start the research process when the app starts.
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Start the background task when FastAPI starts."""
logging.info("Starting run_research_forever()...")
await asyncio.sleep(5) # Wait for the server to load
asyncio.create_task(run_research_forever()) # Run in background
yield
logging.info("FastAPI shutdown: Cleaning up resources.")
# Initialize the FastAPI application
app = FastAPI(lifespan=lifespan)
# Load the Llama model (assumed to return a synchronous generator when stream=True)
llm = Llama(model_path=model_in_use["file"], n_ctx=2048)
@app.websocket("/stream")
async def stream(websocket: WebSocket):
logging.info("WebSocket connection established.")
global log_path, last_read_position
await websocket.accept()
# Send existing interaction history to the client.
try:
with open(log_path, "r") as log_file:
interaction_history = log_file.read()
last_read_position = log_file.tell()
if interaction_history:
await websocket.send_text(interaction_history)
except Exception as e:
logging.error(f"Error reading interaction history: {e}")
# Continuously send updates from the log file.
while True:
await asyncio.sleep(0.1)
try:
with open(log_path, "r") as log_file:
log_file.seek(last_read_position)
new_content = log_file.read()
if new_content:
await websocket.send_text(new_content)
last_read_position = log_file.tell()
except Exception as e:
logging.error(f"Error reading interaction history: {e}")
# Endpoint to retrieve the interaction log.
@app.get("/log")
async def get_log():
try:
with open("interaction_history.log", "r") as f:
log_content = f.read()
# Return the log inside a <pre> block for readability.
return HTMLResponse(content=f"<pre>{log_content}</pre>")
except Exception as e:
logging.error(f"Error reading log: {e}")
return {"error": str(e)}
# A simple frontend page with a link to the log.
@app.get("/", response_class=HTMLResponse)
async def get():
try:
with open("app/templates/index.html", "r") as f:
html_content = f.read()
except Exception as e:
logging.error(f"Error loading template: {e}")
html_content = "<html><body><h1>Error loading template</h1></body></html>"
return HTMLResponse(html_content)
# To run the app, use a command like:
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|