Spaces:
Sleeping
Sleeping
Commit
·
677b005
1
Parent(s):
9f2c590
Upload 17 files
Browse files- .gitattributes +44 -0
- .gitignore +5 -0
- Commands.txt +17 -0
- README.md +0 -17
- app.ipynb +59 -0
- app.py +86 -0
- chatbot.py +102 -0
- constants.py +9 -0
- db/c811917d-8276-48ba-b913-6ed6196f4484/data_level0.bin +3 -0
- db/c811917d-8276-48ba-b913-6ed6196f4484/header.bin +3 -0
- db/c811917d-8276-48ba-b913-6ed6196f4484/index_metadata.pickle +3 -0
- db/c811917d-8276-48ba-b913-6ed6196f4484/length.bin +3 -0
- db/c811917d-8276-48ba-b913-6ed6196f4484/link_lists.bin +3 -0
- db/chroma.sqlite3 +3 -0
- docs/Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman-Compilers - Principles, Techniques, and Tools-Pearson_Addison Wesley (2006).pdf +3 -0
- ingest.py +27 -0
- requirements.txt +18 -0
.gitattributes
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
db/ filter=lfs diff=lfs merge=lfs -text
|
2 |
+
# LaMini-T5-738M/ filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
5 |
+
# HF
|
6 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
31 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
39 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
40 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
41 |
+
*.pdf filter=lfs diff=lfs merge=lfs -text
|
42 |
+
*.pickel filter=lfs diff=lfs merge=lfs -text
|
43 |
+
db/*.pickle filter=lfs diff=lfs merge=lfs -text
|
44 |
+
db/c811917d-8276-48ba-b913-6ed6196f4484/index_metadata.pickle filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
# Lib/
|
3 |
+
search_pdf_env/
|
4 |
+
LaMini-T5-738M/
|
5 |
+
# db/
|
Commands.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Youtube video : https://youtu.be/rIV1EseKwU4?si=YOJ2a_9eYVPhxn6X
|
2 |
+
Github : https://github.com/AIAnytime/Search-Your-PDF-App/tree/main
|
3 |
+
LLM : https://huggingface.co/MBZUAI/LaMini-T5-738M
|
4 |
+
|
5 |
+
|
6 |
+
NOTE: Remove the chroma settings from the code to work with latest versions
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
1) Creating a virtual env
|
11 |
+
python -m venv <env_name>
|
12 |
+
|
13 |
+
2) Activating virtual environment
|
14 |
+
search_pdf_env\Scripts\activate
|
15 |
+
|
16 |
+
3)Installing requirements:
|
17 |
+
pipi nstall -r requirements.txt
|
README.md
CHANGED
@@ -1,27 +1,10 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
title: Chat With Doc
|
4 |
-
sdk: streamlit
|
5 |
-
emoji: 🏃
|
6 |
-
colorFrom: gray
|
7 |
-
colorTo: pink
|
8 |
-
---
|
9 |
metadata
|
10 |
-
|
11 |
title: Chat With Doc
|
12 |
-
|
13 |
emoji: 😻
|
14 |
-
|
15 |
colorFrom: gray
|
16 |
-
|
17 |
colorTo: pink
|
18 |
-
|
19 |
sdk: streamlit
|
20 |
-
|
21 |
sdk_version: 1.29.0
|
22 |
-
|
23 |
app_file: app.py
|
24 |
-
|
25 |
pinned: false
|
26 |
-
|
27 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
metadata
|
|
|
2 |
title: Chat With Doc
|
|
|
3 |
emoji: 😻
|
|
|
4 |
colorFrom: gray
|
|
|
5 |
colorTo: pink
|
|
|
6 |
sdk: streamlit
|
|
|
7 |
sdk_version: 1.29.0
|
|
|
8 |
app_file: app.py
|
|
|
9 |
pinned: false
|
|
|
10 |
license: mit
|
app.ipynb
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"!pip install -r requirements.txt\n",
|
10 |
+
"!pip install pyngrok"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"!streamlit run app.py &>\"/content/drive/MyDrive/Colab Notebooks/LangChatbot/MAIN PROJECT - Langchain - STREAMLIT/KEFY_BOT_Langchain_streamlit/logs_streamlit.txt\" &\n"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"cell_type": "code",
|
24 |
+
"execution_count": null,
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"!ngrok config add-authtoken 2Z7XecBchSB7U8OxYamQIBoDH4F_7huod8eqNPzz6W5hgu1Uz"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"from pyngrok import ngrok\n",
|
38 |
+
"ngrok_tunnel = ngrok.connect(8502)\n",
|
39 |
+
"print('Public URL:', ngrok_tunnel.public_url)"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"execution_count": null,
|
45 |
+
"metadata": {},
|
46 |
+
"outputs": [],
|
47 |
+
"source": [
|
48 |
+
"ngrok.kill()"
|
49 |
+
]
|
50 |
+
}
|
51 |
+
],
|
52 |
+
"metadata": {
|
53 |
+
"language_info": {
|
54 |
+
"name": "python"
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"nbformat": 4,
|
58 |
+
"nbformat_minor": 2
|
59 |
+
}
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import base64
|
6 |
+
import textwrap
|
7 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
+
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def get_model():
|
14 |
+
# device = torch.device('cpu')
|
15 |
+
device = torch.device('cuda:0')
|
16 |
+
|
17 |
+
checkpoint = "LaMini-T5-738M"
|
18 |
+
checkpoint = "MBZUAI/LaMini-T5-738M"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
20 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
21 |
+
checkpoint,
|
22 |
+
device_map=device,
|
23 |
+
torch_dtype = torch.float32,
|
24 |
+
# offload_folder= "/model_ck"
|
25 |
+
)
|
26 |
+
return base_model,tokenizer
|
27 |
+
|
28 |
+
@st.cache_resource
|
29 |
+
def llm_pipeline():
|
30 |
+
base_model,tokenizer = get_model()
|
31 |
+
pipe = pipeline(
|
32 |
+
'text2text-generation',
|
33 |
+
model = base_model,
|
34 |
+
tokenizer=tokenizer,
|
35 |
+
max_length = 256,
|
36 |
+
do_sample = True,
|
37 |
+
temperature = 0.3,
|
38 |
+
top_p = 0.95,
|
39 |
+
device=device
|
40 |
+
)
|
41 |
+
|
42 |
+
local_llm = HuggingFacePipeline(pipeline = pipe)
|
43 |
+
return local_llm
|
44 |
+
|
45 |
+
@st.cache_resource
|
46 |
+
def qa_llm():
|
47 |
+
llm = llm_pipeline()
|
48 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
49 |
+
db = Chroma(persist_directory="db", embedding_function = embeddings)
|
50 |
+
retriever = db.as_retriever()
|
51 |
+
qa = RetrievalQA.from_chain_type(
|
52 |
+
llm=llm,
|
53 |
+
chain_type = "stuff",
|
54 |
+
retriever = retriever,
|
55 |
+
return_source_documents=True
|
56 |
+
)
|
57 |
+
return qa
|
58 |
+
|
59 |
+
|
60 |
+
def process_answer(instruction):
|
61 |
+
response=''
|
62 |
+
instruction = instruction
|
63 |
+
qa = qa_llm()
|
64 |
+
generated_text = qa(instruction)
|
65 |
+
answer = generated_text['result']
|
66 |
+
return answer, generated_text
|
67 |
+
|
68 |
+
def main():
|
69 |
+
st.title("Search your pdf📚")
|
70 |
+
with st.expander("About the App"):
|
71 |
+
st.markdown(
|
72 |
+
"""This is a Generative AI powered Question and Answering app that responds to questions about your PDF file.
|
73 |
+
"""
|
74 |
+
)
|
75 |
+
|
76 |
+
question = st.text_area("Enter Your Question")
|
77 |
+
if st.button("Search"):
|
78 |
+
st.info("Your question: "+question)
|
79 |
+
st.info("Your Answer")
|
80 |
+
answer, metadata = process_answer(question)
|
81 |
+
st.write(answer)
|
82 |
+
st.write(metadata)
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
main()
|
chatbot.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import base64
|
6 |
+
import textwrap
|
7 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
+
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from streamlit_chat import message
|
12 |
+
|
13 |
+
# device = torch.device('cpu')
|
14 |
+
device = torch.device('cuda:0')
|
15 |
+
|
16 |
+
|
17 |
+
checkpoint = "LaMini-T5-738M"
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
19 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(
|
20 |
+
checkpoint,
|
21 |
+
device_map=device,
|
22 |
+
torch_dtype = torch.float32,
|
23 |
+
# offload_folder= "/model_ck"
|
24 |
+
)
|
25 |
+
|
26 |
+
@st.cache_resource
|
27 |
+
def llm_pipeline():
|
28 |
+
pipe = pipeline(
|
29 |
+
'text2text-generation',
|
30 |
+
model = base_model,
|
31 |
+
tokenizer=tokenizer,
|
32 |
+
max_length = 256,
|
33 |
+
do_sample = True,
|
34 |
+
temperature = 0.3,
|
35 |
+
top_p = 0.95,
|
36 |
+
)
|
37 |
+
|
38 |
+
local_llm = HuggingFacePipeline(pipeline = pipe)
|
39 |
+
return local_llm
|
40 |
+
|
41 |
+
@st.cache_resource
|
42 |
+
def qa_llm():
|
43 |
+
llm = llm_pipeline()
|
44 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
45 |
+
db = Chroma(persist_directory="db", embedding_function = embeddings)
|
46 |
+
retriever = db.as_retriever()
|
47 |
+
qa = RetrievalQA.from_chain_type(
|
48 |
+
llm=llm,
|
49 |
+
chain_type = "stuff",
|
50 |
+
retriever = retriever,
|
51 |
+
return_source_documents=True
|
52 |
+
)
|
53 |
+
return qa
|
54 |
+
|
55 |
+
|
56 |
+
def process_answer(instruction):
|
57 |
+
response=''
|
58 |
+
instruction = instruction
|
59 |
+
qa = qa_llm()
|
60 |
+
generated_text = qa(instruction)
|
61 |
+
answer = generated_text['result']
|
62 |
+
return answer, generated_text
|
63 |
+
|
64 |
+
# Display conversation history using Streamlit messages
|
65 |
+
def display_conversation(history):
|
66 |
+
for i in range(len(history["generated"])):
|
67 |
+
message(history["past"][i] , is_user=True, key= str(i) + "_user")
|
68 |
+
message(history["generated"][i] , key= str(i))
|
69 |
+
|
70 |
+
|
71 |
+
def main():
|
72 |
+
st.title("Chat with your pdf📚")
|
73 |
+
with st.expander("About the App"):
|
74 |
+
st.markdown(
|
75 |
+
"""
|
76 |
+
This is a Generative AI powered Question and Answering app that responds to questions about your PDF file.
|
77 |
+
"""
|
78 |
+
)
|
79 |
+
|
80 |
+
user_input = st.text_input("",key="input")
|
81 |
+
|
82 |
+
# Initialize session state for generated responses and past messages
|
83 |
+
if "generated" not in st.session_state:
|
84 |
+
st.session_state["generated"] = ["I am ready to help you"]
|
85 |
+
if "past" not in st.session_state:
|
86 |
+
st.session_state["past"] = ["Hey There!"]
|
87 |
+
|
88 |
+
# Search the database for a response based on user input and update session state
|
89 |
+
if user_input:
|
90 |
+
answer = process_answer({"query" : user_input})
|
91 |
+
st.session_state["past"].append(user_input)
|
92 |
+
response = answer
|
93 |
+
st.session_state["generated"].append(response)
|
94 |
+
|
95 |
+
# Display Conversation history using Streamlit messages
|
96 |
+
if st.session_state["generated"]:
|
97 |
+
display_conversation(st.session_state)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
main()
|
constants.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from chromadb.config import Settings
|
3 |
+
|
4 |
+
# Define Chroma Settings
|
5 |
+
CHROMA_SETTINGS = Settings(
|
6 |
+
chroma_db_impl = 'duckdb+parquet' ,
|
7 |
+
persist_directory = "db",
|
8 |
+
anonymized_telemetry = False
|
9 |
+
)
|
db/c811917d-8276-48ba-b913-6ed6196f4484/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0656652b4f3db81247ca6f4a0365416da3b66a0ed0cd46e9392400ee92da06ef
|
3 |
+
size 62012000
|
db/c811917d-8276-48ba-b913-6ed6196f4484/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44c6e025ebb371f800e844ce62d9b7dde9b123633b5d9e3bf6199de9a6580582
|
3 |
+
size 100
|
db/c811917d-8276-48ba-b913-6ed6196f4484/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05b13caae7bf03a47b0bc51c04f39eb07ffdc234fe6b7f369b872a2447117da8
|
3 |
+
size 2144478
|
db/c811917d-8276-48ba-b913-6ed6196f4484/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4fd7fddbb7246719bc06423736fe0cebe9b417bdb555ae72f6061248bc1e995
|
3 |
+
size 148000
|
db/c811917d-8276-48ba-b913-6ed6196f4484/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fbff72c999b684e5ef2d0dfbeb81e5179ca48fa5c62b8ccadf3ef53f2561744
|
3 |
+
size 317184
|
db/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c5ae7212513205065174fc77e7fd813e803de0635f4fb32947eeeb2fbb067cf
|
3 |
+
size 264290304
|
docs/Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman-Compilers - Principles, Techniques, and Tools-Pearson_Addison Wesley (2006).pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92646e7788a17653fbcd9aaf16724ae62e67b4990f4289ee39ca55e5fb9ab62a
|
3 |
+
size 6060190
|
ingest.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
import os
|
6 |
+
from constants import CHROMA_SETTINGS
|
7 |
+
|
8 |
+
persist_directory = "db"
|
9 |
+
|
10 |
+
def main():
|
11 |
+
for root, dirs, files in os.walk("docs"):
|
12 |
+
for file in files:
|
13 |
+
if file.endswith(".pdf"):
|
14 |
+
print(file)
|
15 |
+
loader = PDFMinerLoader(os.path.join(root, file))
|
16 |
+
documents = loader.load()
|
17 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
|
18 |
+
texts = text_splitter.split_documents(documents)
|
19 |
+
# create embeddings
|
20 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
21 |
+
# create vector store
|
22 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
23 |
+
db.persist()
|
24 |
+
db=None
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
streamlit
|
3 |
+
transformers
|
4 |
+
requests
|
5 |
+
torch
|
6 |
+
einops
|
7 |
+
accelerate
|
8 |
+
bitsandbytes
|
9 |
+
pdfminer.six
|
10 |
+
bs4
|
11 |
+
sentence-transformers
|
12 |
+
chromadb
|
13 |
+
torchvision
|
14 |
+
torchaudio
|
15 |
+
sentencepiece
|
16 |
+
requests
|
17 |
+
uvicorn
|
18 |
+
streamlit-chat
|