File size: 6,322 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os, sys, shutil
import tempfile
import gradio as gr
import pandas as pd
import requests
import wget
from core import run_download_script

from assets.i18n.i18n import I18nAuto

from rvc.lib.utils import format_title

i18n = I18nAuto()

now_dir = os.getcwd()
sys.path.append(now_dir)

gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio")

if os.path.exists(gradio_temp_dir):
    shutil.rmtree(gradio_temp_dir)


def save_drop_model(dropbox):
    if "pth" not in dropbox and "index" not in dropbox:
        raise gr.Error(
            message="The file you dropped is not a valid model file. Please try again."
        )
    else:
        file_name = format_title(os.path.basename(dropbox))
        if ".pth" in dropbox:
            model_name = format_title(file_name.split(".pth")[0])
        else:
            if "v2" not in dropbox:
                model_name = format_title(
                    file_name.split("_nprobe_1_")[1].split("_v1")[0]
                )
            else:
                model_name = format_title(
                    file_name.split("_nprobe_1_")[1].split("_v2")[0]
                )
        model_path = os.path.join(now_dir, "logs", model_name)
        if not os.path.exists(model_path):
            os.makedirs(model_path)
        if os.path.exists(os.path.join(model_path, file_name)):
            os.remove(os.path.join(model_path, file_name))
        shutil.move(dropbox, os.path.join(model_path, file_name))
        print(f"{file_name} saved in {model_path}")
        gr.Info(f"{file_name} saved in {model_path}")
    return None


def search_models(name):
    url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15"
    headers = {
        "apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2OTUxNjczODgsImV4cCI6MjAxMDc0MzM4OH0.7z5WMIbjR99c2Ooc0ma7B_FyGq10G8X-alkCYTkKR10"
    }
    response = requests.get(url, headers=headers)
    data = response.json()
    if len(data) == 0:
        gr.Info(i18n("We couldn't find models by that name."))
        return None
    else:
        df = pd.DataFrame(data)[["name", "link", "epochs", "type"]]
        df["link"] = df["link"].apply(
            lambda x: f'<a href="{x}" target="_blank">{x}</a>'
        )
        return df


json_url = "https://huggingface.co/IAHispano/Applio/raw/main/pretrains.json"


def fetch_pretrained_data():
    response = requests.get(json_url)
    response.raise_for_status()
    return response.json()


def get_pretrained_list():
    data = fetch_pretrained_data()
    return list(data.keys())


def get_pretrained_sample_rates(model):
    data = fetch_pretrained_data()
    return list(data[model].keys())


def download_pretrained_model(model, sample_rate):
    data = fetch_pretrained_data()
    paths = data[model][sample_rate]
    pretraineds_custom_path = os.path.join("rvc", "pretraineds", "pretraineds_custom")
    os.makedirs(pretraineds_custom_path, exist_ok=True)

    d_url = f"https://huggingface.co/{paths['D']}"
    g_url = f"https://huggingface.co/{paths['G']}"

    gr.Info("Downloading Pretrained Model...")
    print("Downloading Pretrained Model...")
    wget.download(d_url, out=pretraineds_custom_path)
    wget.download(g_url, out=pretraineds_custom_path)


def update_sample_rate_dropdown(model):
    return {
        "choices": get_pretrained_sample_rates(model),
        "value": get_pretrained_sample_rates(model)[0],
        "__type__": "update",
    }


def download_tab():
    with gr.Column():
        gr.Markdown(value=i18n("## Download Model"))
        model_link = gr.Textbox(
            label=i18n("Model Link"),
            placeholder=i18n("Introduce the model link"),
            interactive=True,
        )
        model_download_output_info = gr.Textbox(
            label=i18n("Output Information"),
            info=i18n("The output information will be displayed here."),
            value="",
            max_lines=8,
            interactive=False,
        )
        model_download_button = gr.Button(i18n("Download Model"))
        model_download_button.click(
            fn=run_download_script,
            inputs=[model_link],
            outputs=[model_download_output_info],
            api_name="model_download",
        )
        gr.Markdown(value=i18n("## Drop files"))
        dropbox = gr.File(
            label=i18n(
                "Drag your .pth file and .index file into this space. Drag one and then the other."
            ),
            type="filepath",
        )

        dropbox.upload(
            fn=save_drop_model,
            inputs=[dropbox],
            outputs=[dropbox],
        )
        gr.Markdown(value=i18n("## Search Model"))
        search_name = gr.Textbox(
            label=i18n("Model Name"),
            placeholder=i18n("Introduce the model name to search."),
            interactive=True,
        )
        search_table = gr.Dataframe(datatype="markdown")
        search = gr.Button(i18n("Search"))
        search.click(
            fn=search_models,
            inputs=[search_name],
            outputs=[search_table],
        )
        search_name.submit(search_models, [search_name], search_table)
        gr.Markdown(value=i18n("## Download Pretrained Models"))
        pretrained_model = gr.Dropdown(
            label=i18n("Pretrained"),
            info=i18n("Select the pretrained model you want to download."),
            choices=get_pretrained_list(),
            value="Titan",
            interactive=True,
        )
        pretrained_sample_rate = gr.Dropdown(
            label=i18n("Sampling Rate"),
            info=i18n("And select the sampling rate."),
            choices=get_pretrained_sample_rates(pretrained_model.value),
            value="40k",
            interactive=True,
            allow_custom_value=True,
        )
        pretrained_model.change(
            update_sample_rate_dropdown,
            inputs=[pretrained_model],
            outputs=[pretrained_sample_rate],
        )
        download_pretrained = gr.Button(i18n("Download"))
        download_pretrained.click(
            fn=download_pretrained_model,
            inputs=[pretrained_model, pretrained_sample_rate],
            outputs=[],
        )