Spaces:
Runtime error
Runtime error
import os | |
import numpy as np | |
import torch | |
import torch.utils.data | |
from mel_processing import spectrogram_torch | |
from utils import load_filepaths_and_text, load_wav_to_torch | |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset): | |
""" | |
Dataset that loads text and audio pairs. | |
Args: | |
hparams: Hyperparameters. | |
""" | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
""" | |
Filters audio paths and text pairs based on text length. | |
""" | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
""" | |
Converts speaker ID to a LongTensor. | |
Args: | |
sid (str): Speaker ID. | |
""" | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as error: | |
print(f"Error converting speaker ID '{sid}' to integer. Exception: {error}") | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
""" | |
Loads and processes audio and text data for a single pair. | |
Args: | |
audiopath_and_text (list): List containing audio path, text, pitch, pitchf, and speaker ID. | |
""" | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
pitch = audiopath_and_text[2] | |
pitchf = audiopath_and_text[3] | |
dv = audiopath_and_text[4] | |
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
pitch = pitch[:len_min] | |
pitchf = pitchf[:len_min] | |
return (spec, wav, phone, pitch, pitchf, dv) | |
def get_labels(self, phone, pitch, pitchf): | |
""" | |
Loads and processes phoneme, pitch, and pitchf labels. | |
Args: | |
phone (str): Path to phoneme label file. | |
pitch (str): Path to pitch label file. | |
pitchf (str): Path to pitchf label file. | |
""" | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
pitch = np.load(pitch) | |
pitchf = np.load(pitchf) | |
n_num = min(phone.shape[0], 900) | |
phone = phone[:n_num, :] | |
pitch = pitch[:n_num] | |
pitchf = pitchf[:n_num] | |
phone = torch.FloatTensor(phone) | |
pitch = torch.LongTensor(pitch) | |
pitchf = torch.FloatTensor(pitchf) | |
return phone, pitch, pitchf | |
def get_audio(self, filename): | |
""" | |
Loads and processes audio data. | |
Args: | |
filename (str): Path to audio file. | |
""" | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: | |
raise ValueError( | |
"{} SR doesn't match target {} SR".format(sample_rate, self.sample_rate) | |
) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as error: | |
print(f"An error occurred getting spec from {spec_filename}: {error}") | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
""" | |
Returns a single audio-text pair. | |
Args: | |
index (int): Index of the data sample. | |
""" | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
""" | |
Returns the length of the dataset. | |
""" | |
return len(self.audiopaths_and_text) | |
class TextAudioCollateMultiNSFsid: | |
""" | |
Collates text and audio data for training. | |
Args: | |
return_ids (bool, optional): Whether to return sample IDs. Defaults to False. | |
""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
""" | |
Collates a batch of data samples. | |
Args: | |
batch (list): List of data samples. | |
""" | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor( | |
len(batch), max_phone_len, batch[0][2].shape[1] | |
) | |
pitch_padded = torch.LongTensor(len(batch), max_phone_len) | |
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len) | |
phone_padded.zero_() | |
pitch_padded.zero_() | |
pitchf_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
pitch = row[3] | |
pitch_padded[i, : pitch.size(0)] = pitch | |
pitchf = row[4] | |
pitchf_padded[i, : pitchf.size(0)] = pitchf | |
sid[i] = row[5] | |
return ( | |
phone_padded, | |
phone_lengths, | |
pitch_padded, | |
pitchf_padded, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
sid, | |
) | |
class TextAudioLoader(torch.utils.data.Dataset): | |
""" | |
Dataset that loads text and audio pairs. | |
Args: | |
hparams: Hyperparameters. | |
""" | |
def __init__(self, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files) | |
self.max_wav_value = hparams.max_wav_value | |
self.sample_rate = hparams.sample_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sample_rate = hparams.sample_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
""" | |
Filters audio paths and text pairs based on text length. | |
""" | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for entry in self.audiopaths_and_text: | |
if len(entry) >= 3: | |
audiopath, text, dv = entry[:3] | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, dv]) | |
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
""" | |
Converts speaker ID to a LongTensor. | |
Args: | |
sid (str): Speaker ID. | |
""" | |
try: | |
sid = torch.LongTensor([int(sid)]) | |
except ValueError as error: | |
print(f"Error converting speaker ID '{sid}' to integer. Exception: {error}") | |
sid = torch.LongTensor([0]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
""" | |
Loads and processes audio and text data for a single pair. | |
Args: | |
audiopath_and_text (list): List containing audio path, text, and speaker ID. | |
""" | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
dv = audiopath_and_text[2] | |
phone = self.get_labels(phone) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
return (spec, wav, phone, dv) | |
def get_labels(self, phone): | |
""" | |
Loads and processes phoneme labels. | |
Args: | |
phone (str): Path to phoneme label file. | |
""" | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
n_num = min(phone.shape[0], 900) | |
phone = phone[:n_num, :] | |
phone = torch.FloatTensor(phone) | |
return phone | |
def get_audio(self, filename): | |
""" | |
Loads and processes audio data. | |
Args: | |
filename (str): Path to audio file. | |
""" | |
audio, sample_rate = load_wav_to_torch(filename) | |
if sample_rate != self.sample_rate: | |
raise ValueError( | |
"{} SR doesn't match target {} SR".format(sample_rate, self.sample_rate) | |
) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except Exception as error: | |
print(f"An error occurred getting spec from {spec_filename}: {error}") | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
""" | |
Returns a single audio-text pair. | |
Args: | |
index (int): Index of the data sample. | |
""" | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
""" | |
Returns the length of the dataset. | |
""" | |
return len(self.audiopaths_and_text) | |
class TextAudioCollate: | |
""" | |
Collates text and audio data for training. | |
Args: | |
return_ids (bool, optional): Whether to return sample IDs. Defaults to False. | |
""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
""" | |
Collates a batch of data samples. | |
Args: | |
batch (list): List of data samples. | |
""" | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor( | |
len(batch), max_phone_len, batch[0][2].shape[1] | |
) | |
phone_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
sid[i] = row[3] | |
return ( | |
phone_padded, | |
phone_lengths, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
sid, | |
) | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
""" | |
Distributed sampler that groups data into buckets based on length. | |
Args: | |
dataset (torch.utils.data.Dataset): Dataset to sample from. | |
batch_size (int): Batch size. | |
boundaries (list): List of length boundaries for buckets. | |
num_replicas (int, optional): Number of processes participating in distributed training. Defaults to None. | |
rank (int, optional): Rank of the current process. Defaults to None. | |
shuffle (bool, optional): Whether to shuffle the data. Defaults to True. | |
""" | |
def __init__( | |
self, | |
dataset, | |
batch_size, | |
boundaries, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
""" | |
Creates buckets of data samples based on length. | |
""" | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: | |
buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, -1, -1): # | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = ( | |
total_batch_size - (len_bucket % total_batch_size) | |
) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
""" | |
Iterates over batches of data samples. | |
""" | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = ( | |
ids_bucket | |
+ ids_bucket * (rem // len_bucket) | |
+ ids_bucket[: (rem % len_bucket)] | |
) | |
ids_bucket = ids_bucket[self.rank :: self.num_replicas] | |
# batching | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [ | |
bucket[idx] | |
for idx in ids_bucket[ | |
j * self.batch_size : (j + 1) * self.batch_size | |
] | |
] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
""" | |
Performs binary search to find the bucket index for a given length. | |
Args: | |
x (int): Length to find the bucket for. | |
lo (int, optional): Lower bound of the search range. Defaults to 0. | |
hi (int, optional): Upper bound of the search range. Defaults to None. | |
""" | |
if hi is None: | |
hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: | |
return mid | |
elif x <= self.boundaries[mid]: | |
return self._bisect(x, lo, mid) | |
else: | |
return self._bisect(x, mid + 1, hi) | |
else: | |
return -1 | |
def __len__(self): | |
""" | |
Returns the length of the sampler. | |
""" | |
return self.num_samples // self.batch_size | |