|
from functools import partial |
|
import torch |
|
import transformers |
|
import math |
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
|
from peft import ( |
|
PeftModel, |
|
) |
|
|
|
RED = "\033[91m" |
|
YELLOW = "\033[93m" |
|
GREEN = "\033[92m" |
|
RESET = "\033[0m" |
|
|
|
last_print_label = '' |
|
|
|
custom_scheduler_params = {'trigger_loss': 0.0, 'ramp_down_ratio':1.0, 'current_loss': 0.0,'dynamic_scheduler_stop': False, 'calc_ramp_down_at_step': 0, 'calc_num_training_steps': 0} |
|
|
|
|
|
def custom_scheduler_global_update(current_loss: float): |
|
custom_scheduler_params.update({'current_loss': current_loss}) |
|
|
|
def custom_scheduler_global_setup(trigger_loss: float, ramp_down_ratio: float): |
|
custom_scheduler_params.update({'trigger_loss': trigger_loss}) |
|
custom_scheduler_params.update({'ramp_down_ratio': ramp_down_ratio}) |
|
|
|
|
|
custom_scheduler_params.update({'calc_num_training_steps': 0}) |
|
|
|
custom_scheduler_params.update({'calc_ramp_down_at_step': 0}) |
|
|
|
custom_scheduler_params.update({'dynamic_scheduler_stop': False}) |
|
|
|
|
|
|
|
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
half_steps = num_training_steps//2 |
|
|
|
num_warmup_steps = min(num_warmup_steps,half_steps) |
|
|
|
if current_step < num_warmup_steps: |
|
print_label = 'Scheduler: Warmup' |
|
elif current_step < half_steps: |
|
print_label = 'Scheduler: Hold' |
|
else: |
|
print_label = 'Scheduler: Annealing' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
if current_step < num_warmup_steps: |
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
|
if current_step < half_steps: |
|
return 1.0 |
|
|
|
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) |
|
num_cycles = 0.5 |
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
|
|
def _get_fp_cosine_raise_and_fall_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
half_steps = num_training_steps//2 |
|
|
|
|
|
|
|
if current_step < half_steps: |
|
print_label = 'Scheduler: Raise' |
|
else: |
|
print_label = 'Scheduler: Fall' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
|
|
|
|
|
|
|
|
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) |
|
num_cycles = 0.5 |
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps) |
|
|
|
if current_step < num_warmup_steps: |
|
print_label = 'Scheduler: Warmup' |
|
elif current_step < num_firstepoch_steps: |
|
print_label = 'Scheduler: Hold' |
|
else: |
|
print_label = 'Scheduler: Annealing' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
if current_step < num_warmup_steps: |
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
|
if current_step < num_firstepoch_steps: |
|
return 1.0 |
|
|
|
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps)) |
|
num_cycles = 0.5 |
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
|
|
def _get_fp_cdrop_rate_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
num_warmup_steps = min(num_warmup_steps, num_firstepoch_steps) |
|
|
|
current_epoch = (current_step // num_firstepoch_steps) + 1 |
|
|
|
|
|
if current_step < num_warmup_steps: |
|
print_label = 'Scheduler: Warmup' |
|
elif current_step < num_firstepoch_steps: |
|
print_label = 'Scheduler: Hold' |
|
else: |
|
print_label = 'Scheduler: Drop Rate' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
if current_step < num_warmup_steps: |
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
|
if current_step < num_firstepoch_steps: |
|
return 1.0 |
|
|
|
|
|
|
|
learning_rate = 1.0 / float(2 ** (current_epoch - 1)) |
|
|
|
return learning_rate |
|
|
|
|
|
|
|
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): |
|
""" |
|
Args: |
|
optimizer ([`~torch.optim.Optimizer`]): |
|
The optimizer for which to schedule the learning rate. |
|
num_warmup_steps (`int`): |
|
The number of steps for the warmup phase. |
|
num_training_steps (`int`): |
|
The total number of training steps. |
|
last_epoch (`int`, *optional*, defaults to -1): |
|
The index of the last epoch when resuming training. |
|
|
|
Return: |
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
""" |
|
|
|
lr_lambda = partial( |
|
_get_fp_cosine_schedule_with_warmup_lr_lambda, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): |
|
""" |
|
Args: |
|
optimizer ([`~torch.optim.Optimizer`]): |
|
The optimizer for which to schedule the learning rate. |
|
num_warmup_steps (`int`): |
|
The number of steps for the warmup phase. |
|
num_training_steps (`int`): |
|
The total number of training steps. |
|
last_epoch (`int`, *optional*, defaults to -1): |
|
The index of the last epoch when resuming training. |
|
|
|
Return: |
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
""" |
|
|
|
lr_lambda = partial( |
|
_get_fp_half_schedule_with_warmup_lr_lambda, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
def custom_raise_fall_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): |
|
""" |
|
Args: |
|
optimizer ([`~torch.optim.Optimizer`]): |
|
The optimizer for which to schedule the learning rate. |
|
num_warmup_steps (`int`): |
|
The number of steps for the warmup phase. |
|
num_training_steps (`int`): |
|
The total number of training steps. |
|
last_epoch (`int`, *optional*, defaults to -1): |
|
The index of the last epoch when resuming training. |
|
|
|
Return: |
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
""" |
|
|
|
lr_lambda = partial( |
|
_get_fp_cosine_raise_and_fall_lr_lambda, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
|
|
def neftune_forward(self, input: torch.Tensor): |
|
""" |
|
Implements the NEFTune forward pass for the model. Note this works only for |
|
torch.nn.Embedding layers. This method is slightly adapted from the original source code |
|
that can be found here: https://github.com/neelsjain/NEFTune |
|
|
|
Args: |
|
input (`torch.Tensor`): |
|
The input tensor to the model. |
|
noise_alpha (`float`): |
|
The noise alpha value to use for the NEFTune forward pass. |
|
""" |
|
embeddings = torch.nn.functional.embedding( |
|
input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse |
|
) |
|
|
|
if self.training: |
|
|
|
dims = torch.tensor(embeddings.size(1) * embeddings.size(2)) |
|
mag_norm = self.neftune_noise_alpha / torch.sqrt(dims) |
|
embeddings = embeddings + torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm) |
|
|
|
return embeddings |
|
|
|
|
|
class FPNEFtuneTrainer(transformers.Trainer): |
|
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs): |
|
self.neftune_noise_alpha = neftune_noise_alpha |
|
if self.neftune_noise_alpha > 0.0: |
|
model = self._activate_neftune(model) |
|
super().__init__(model = model, *args, **kwargs) |
|
|
|
|
|
def _activate_neftune(self, model): |
|
r""" |
|
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 |
|
""" |
|
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}") |
|
if isinstance(model, transformers.PreTrainedModel): |
|
embeddings = model.get_input_embeddings() |
|
elif isinstance(model, PeftModel): |
|
embeddings = model.base_model.get_input_embeddings() |
|
|
|
embeddings.neftune_noise_alpha = self.neftune_noise_alpha |
|
old_forward = embeddings.forward |
|
|
|
|
|
|
|
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__) |
|
setattr(embeddings, "forward", bound_method) |
|
|
|
|
|
embeddings._trl_old_forward = old_forward |
|
|
|
return model |
|
|
|
def train(self, *args, **kwargs): |
|
output = super().train(*args, **kwargs) |
|
|
|
|
|
|
|
if self.neftune_noise_alpha is not None: |
|
|
|
if isinstance(self.model, transformers.PreTrainedModel): |
|
embeddings = self.model.get_input_embeddings() |
|
elif isinstance(self.model, PeftModel): |
|
embeddings = self.model.base_model.get_input_embeddings() |
|
|
|
if hasattr(embeddings, "_trl_old_forward"): |
|
embeddings.forward = embeddings._trl_old_forward |
|
del embeddings._trl_old_forward |
|
del embeddings.neftune_noise_alpha |
|
|
|
return output |
|
|
|
|
|
class FPSchedulerTrainer(transformers.Trainer): |
|
def __init__(self,neftune_noise_alpha:float = 0.0, model = None, *args, **kwargs): |
|
self.neftune_noise_alpha = neftune_noise_alpha |
|
if self.neftune_noise_alpha > 0.0: |
|
model = self._activate_neftune(model) |
|
super().__init__(model = model, *args, **kwargs) |
|
|
|
|
|
def _activate_neftune(self, model): |
|
r""" |
|
Activates the neftune as presented in this code: https://github.com/neelsjain/NEFTune and paper: https://arxiv.org/abs/2310.05914 |
|
""" |
|
print(f"Activating {RED}NEFtune{RESET} with scale: {self.neftune_noise_alpha}") |
|
if isinstance(model, transformers.PreTrainedModel): |
|
embeddings = model.get_input_embeddings() |
|
elif isinstance(model, PeftModel): |
|
embeddings = model.base_model.get_input_embeddings() |
|
|
|
embeddings.neftune_noise_alpha = self.neftune_noise_alpha |
|
old_forward = embeddings.forward |
|
|
|
|
|
|
|
bound_method = neftune_forward.__get__(embeddings, embeddings.__class__) |
|
setattr(embeddings, "forward", bound_method) |
|
|
|
|
|
embeddings._trl_old_forward = old_forward |
|
|
|
return model |
|
|
|
def train(self, *args, **kwargs): |
|
output = super().train(*args, **kwargs) |
|
|
|
|
|
|
|
if self.neftune_noise_alpha is not None: |
|
|
|
if isinstance(self.model, transformers.PreTrainedModel): |
|
embeddings = self.model.get_input_embeddings() |
|
elif isinstance(self.model, PeftModel): |
|
embeddings = self.model.base_model.get_input_embeddings() |
|
|
|
if hasattr(embeddings, "_trl_old_forward"): |
|
embeddings.forward = embeddings._trl_old_forward |
|
del embeddings._trl_old_forward |
|
del embeddings.neftune_noise_alpha |
|
|
|
return output |
|
|
|
|
|
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): |
|
|
|
|
|
num_train_epochs = self.args.num_train_epochs |
|
num_warmup_steps=self.args.get_warmup_steps(num_training_steps) |
|
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs) |
|
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps |
|
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps |
|
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps |
|
|
|
custom_scheduler_params.update({'dynamic_scheduler_stop': False}) |
|
|
|
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps") |
|
if self.args.lr_scheduler_type == 'cosine': |
|
|
|
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc) |
|
|
|
if num_warmup_acc>num_firstepoch_steps_acc: |
|
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m") |
|
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") |
|
else: |
|
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") |
|
|
|
self.lr_scheduler = custom_cosine_scheduler_with_warmup( |
|
optimizer=self.optimizer if optimizer is None else optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
self._created_lr_scheduler = True |
|
return self.lr_scheduler |
|
elif self.args.lr_scheduler_type == 'constant': |
|
|
|
half_step_acc = num_training_steps_acc//2 |
|
num_warmup_acc_min = min(num_warmup_acc, half_step_acc) |
|
|
|
if num_warmup_acc>half_step_acc: |
|
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m") |
|
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") |
|
else: |
|
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") |
|
|
|
self.lr_scheduler = custom_half_scheduler_with_warmup( |
|
optimizer=self.optimizer if optimizer is None else optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
self._created_lr_scheduler = True |
|
return self.lr_scheduler |
|
elif self.args.lr_scheduler_type == 'constant_with_warmup': |
|
|
|
half_step_acc = num_training_steps_acc//2 |
|
|
|
if num_warmup_steps>0: |
|
print(f"Warmup doesn't apply to this scheduler [Raise-Fall]") |
|
|
|
print (f"Scheduler Raise: 0-{half_step_acc}, Fall {half_step_acc}-{num_training_steps_acc}") |
|
|
|
self.lr_scheduler = custom_raise_fall_scheduler_with_warmup( |
|
optimizer=self.optimizer if optimizer is None else optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
self._created_lr_scheduler = True |
|
return self.lr_scheduler |
|
else: |
|
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) |