Walid-Ahmed commited on
Commit
3482efe
·
verified ·
1 Parent(s): aa0a69d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -23
app.py CHANGED
@@ -1,29 +1,14 @@
1
 
2
-
3
- import gradio as gr
4
  import whisper
5
- from accelerate import init_empty_weights, load_checkpoint_and_dispatch
6
- import torch
7
 
8
- # Check if GPU is available and set up device map
9
- device_map = "auto" # Automatically balance layers across available devices
10
- print(f"Using ZeRO-powered device map: {device_map}")
11
 
12
- # Load the Whisper model using Accelerate with ZeRO
13
  model_name = "tiny" # Change to "base", "small", etc., as needed
14
-
15
- print(f"Loading the Whisper model: {model_name} with ZeRO optimization...")
16
- with init_empty_weights():
17
- whisper_model = whisper.load_model(model_name) # Load model structure without weights
18
-
19
- # Dispatch the model across devices using ZeRO
20
- whisper_model = load_checkpoint_and_dispatch(
21
- whisper_model,
22
- device_map=device_map,
23
- dtype=torch.float16 # Use mixed precision for efficiency
24
- )
25
-
26
- print("Model successfully loaded with ZeRO optimization!")
27
 
28
  # Define the transcription function
29
  def transcribe(audio):
@@ -36,9 +21,10 @@ demo = gr.Interface(
36
  fn=transcribe, # The function to be called for transcription
37
  inputs=gr.Audio(source="microphone", type="filepath", label="Speak into the microphone"), # Input audio
38
  outputs=gr.Textbox(label="Transcription"), # Output transcription
39
- title="Whisper Speech-to-Text with ZeRO", # Title of the interface
40
- description="Record audio using your microphone and get a transcription using the Whisper model optimized with ZeRO."
41
  )
42
 
43
  # Launch the Gradio interface
44
  demo.launch()
 
 
1
 
 
 
2
  import whisper
3
+ import gradio as gr
 
4
 
5
+ # Force the model to run on CPU
6
+ device = "cpu"
7
+ print("Running on CPU")
8
 
9
+ # Load the Whisper model on CPU
10
  model_name = "tiny" # Change to "base", "small", etc., as needed
11
+ whisper_model = whisper.load_model(model_name, device=device)
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Define the transcription function
14
  def transcribe(audio):
 
21
  fn=transcribe, # The function to be called for transcription
22
  inputs=gr.Audio(source="microphone", type="filepath", label="Speak into the microphone"), # Input audio
23
  outputs=gr.Textbox(label="Transcription"), # Output transcription
24
+ title="Whisper Speech-to-Text", # Title of the interface
25
+ description="Record audio using your microphone and get a transcription using the Whisper model."
26
  )
27
 
28
  # Launch the Gradio interface
29
  demo.launch()
30
+