wooyeolbaek
commited on
Commit
·
0c1540a
1
Parent(s):
c620069
Add app.py, utils.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionXLPipeline
|
4 |
+
from utils import (
|
5 |
+
cross_attn_init,
|
6 |
+
register_cross_attention_hook,
|
7 |
+
attn_maps,
|
8 |
+
get_net_attn_map,
|
9 |
+
resize_net_attn_map,
|
10 |
+
return_net_attn_map,
|
11 |
+
)
|
12 |
+
|
13 |
+
cross_attn_init()
|
14 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
15 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
)
|
18 |
+
pipe.unet = register_cross_attention_hook(pipe.unet)
|
19 |
+
pipe = pipe.to("cuda")
|
20 |
+
|
21 |
+
|
22 |
+
def inference(prompt):
|
23 |
+
image = pipe(prompt).images[0]
|
24 |
+
net_attn_maps = get_net_attn_map(image.size)
|
25 |
+
net_attn_maps = resize_net_attn_map(net_attn_maps, image.size)
|
26 |
+
net_attn_maps = return_net_attn_map(net_attn_maps, pipe.tokenizer, prompt)
|
27 |
+
|
28 |
+
return image, net_attn_maps
|
29 |
+
|
30 |
+
|
31 |
+
with gr.Blocks() as demo:
|
32 |
+
gr.Markdown(
|
33 |
+
"""
|
34 |
+
🚀 Text-to-Image Cross Attention Map for 🧨 Diffusers ⚡
|
35 |
+
""")
|
36 |
+
prompt = gr.Textbox(value="A photo of a black puppy, christmas atmosphere", label="Prompt", lines=2)
|
37 |
+
btn = gr.Button("Generate images", scale=0)
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
image = gr.Image(height=512,width=512,type="pil")
|
41 |
+
gallery = gr.Gallery(
|
42 |
+
value=None,
|
43 |
+
label="Generated images", show_label=False, elem_id="gallery",
|
44 |
+
object_fit="contain", height="auto")
|
45 |
+
|
46 |
+
|
47 |
+
btn.click(inference, prompt, [image, gallery])
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
demo.launch(share=True)
|
51 |
+
|
utils.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from diffusers.utils import deprecate
|
10 |
+
from diffusers.models.attention_processor import (
|
11 |
+
Attention,
|
12 |
+
AttnProcessor,
|
13 |
+
AttnProcessor2_0,
|
14 |
+
LoRAAttnProcessor,
|
15 |
+
LoRAAttnProcessor2_0
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
attn_maps = {}
|
20 |
+
|
21 |
+
|
22 |
+
def attn_call(
|
23 |
+
self,
|
24 |
+
attn: Attention,
|
25 |
+
hidden_states,
|
26 |
+
encoder_hidden_states=None,
|
27 |
+
attention_mask=None,
|
28 |
+
temb=None,
|
29 |
+
scale=1.0,
|
30 |
+
):
|
31 |
+
residual = hidden_states
|
32 |
+
|
33 |
+
if attn.spatial_norm is not None:
|
34 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
35 |
+
|
36 |
+
input_ndim = hidden_states.ndim
|
37 |
+
|
38 |
+
if input_ndim == 4:
|
39 |
+
batch_size, channel, height, width = hidden_states.shape
|
40 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
41 |
+
|
42 |
+
batch_size, sequence_length, _ = (
|
43 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
44 |
+
)
|
45 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
46 |
+
|
47 |
+
if attn.group_norm is not None:
|
48 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
49 |
+
|
50 |
+
query = attn.to_q(hidden_states, scale=scale)
|
51 |
+
|
52 |
+
if encoder_hidden_states is None:
|
53 |
+
encoder_hidden_states = hidden_states
|
54 |
+
elif attn.norm_cross:
|
55 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
56 |
+
|
57 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
58 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
59 |
+
|
60 |
+
query = attn.head_to_batch_dim(query)
|
61 |
+
key = attn.head_to_batch_dim(key)
|
62 |
+
value = attn.head_to_batch_dim(value)
|
63 |
+
|
64 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
65 |
+
####################################################################################################
|
66 |
+
# (20,4096,77) or (40,1024,77)
|
67 |
+
if hasattr(self, "store_attn_map"):
|
68 |
+
self.attn_map = attention_probs
|
69 |
+
####################################################################################################
|
70 |
+
hidden_states = torch.bmm(attention_probs, value)
|
71 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
72 |
+
|
73 |
+
# linear proj
|
74 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
75 |
+
# dropout
|
76 |
+
hidden_states = attn.to_out[1](hidden_states)
|
77 |
+
|
78 |
+
if input_ndim == 4:
|
79 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
80 |
+
|
81 |
+
if attn.residual_connection:
|
82 |
+
hidden_states = hidden_states + residual
|
83 |
+
|
84 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
85 |
+
|
86 |
+
return hidden_states
|
87 |
+
|
88 |
+
|
89 |
+
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
90 |
+
# Efficient implementation equivalent to the following:
|
91 |
+
L, S = query.size(-2), key.size(-2)
|
92 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
93 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype)
|
94 |
+
if is_causal:
|
95 |
+
assert attn_mask is None
|
96 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
97 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
98 |
+
attn_bias.to(query.dtype)
|
99 |
+
|
100 |
+
if attn_mask is not None:
|
101 |
+
if attn_mask.dtype == torch.bool:
|
102 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
103 |
+
else:
|
104 |
+
attn_bias += attn_mask
|
105 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
106 |
+
attn_weight += attn_bias.to(attn_weight.device)
|
107 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
108 |
+
|
109 |
+
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
|
110 |
+
|
111 |
+
|
112 |
+
def attn_call2_0(
|
113 |
+
self,
|
114 |
+
attn: Attention,
|
115 |
+
hidden_states,
|
116 |
+
encoder_hidden_states=None,
|
117 |
+
attention_mask=None,
|
118 |
+
temb=None,
|
119 |
+
scale: float = 1.0,
|
120 |
+
):
|
121 |
+
residual = hidden_states
|
122 |
+
|
123 |
+
if attn.spatial_norm is not None:
|
124 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
125 |
+
|
126 |
+
input_ndim = hidden_states.ndim
|
127 |
+
|
128 |
+
if input_ndim == 4:
|
129 |
+
batch_size, channel, height, width = hidden_states.shape
|
130 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
131 |
+
|
132 |
+
batch_size, sequence_length, _ = (
|
133 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
134 |
+
)
|
135 |
+
|
136 |
+
if attention_mask is not None:
|
137 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
138 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
139 |
+
# (batch, heads, source_length, target_length)
|
140 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
141 |
+
|
142 |
+
if attn.group_norm is not None:
|
143 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
144 |
+
|
145 |
+
query = attn.to_q(hidden_states, scale=scale)
|
146 |
+
|
147 |
+
if encoder_hidden_states is None:
|
148 |
+
encoder_hidden_states = hidden_states
|
149 |
+
elif attn.norm_cross:
|
150 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
151 |
+
|
152 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
153 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
154 |
+
|
155 |
+
inner_dim = key.shape[-1]
|
156 |
+
head_dim = inner_dim // attn.heads
|
157 |
+
|
158 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
159 |
+
|
160 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
161 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
162 |
+
|
163 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
164 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
165 |
+
####################################################################################################
|
166 |
+
# if self.store_attn_map:
|
167 |
+
if hasattr(self, "store_attn_map"):
|
168 |
+
hidden_states, attn_map = scaled_dot_product_attention(
|
169 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
170 |
+
)
|
171 |
+
# (2,10,4096,77) or (2,20,1024,77)
|
172 |
+
self.attn_map = attn_map
|
173 |
+
else:
|
174 |
+
hidden_states = F.scaled_dot_product_attention(
|
175 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
176 |
+
)
|
177 |
+
####################################################################################################
|
178 |
+
|
179 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
180 |
+
hidden_states = hidden_states.to(query.dtype)
|
181 |
+
|
182 |
+
# linear proj
|
183 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
184 |
+
# dropout
|
185 |
+
hidden_states = attn.to_out[1](hidden_states)
|
186 |
+
|
187 |
+
if input_ndim == 4:
|
188 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
189 |
+
|
190 |
+
if attn.residual_connection:
|
191 |
+
hidden_states = hidden_states + residual
|
192 |
+
|
193 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
194 |
+
|
195 |
+
return hidden_states
|
196 |
+
|
197 |
+
|
198 |
+
def lora_attn_call(self, attn: Attention, hidden_states, *args, **kwargs):
|
199 |
+
self_cls_name = self.__class__.__name__
|
200 |
+
deprecate(
|
201 |
+
self_cls_name,
|
202 |
+
"0.26.0",
|
203 |
+
(
|
204 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
205 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
206 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
207 |
+
),
|
208 |
+
)
|
209 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
210 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
211 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
212 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
213 |
+
|
214 |
+
attn._modules.pop("processor")
|
215 |
+
attn.processor = AttnProcessor()
|
216 |
+
|
217 |
+
if hasattr(self, "store_attn_map"):
|
218 |
+
attn.processor.store_attn_map = True
|
219 |
+
|
220 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
221 |
+
|
222 |
+
|
223 |
+
def lora_attn_call2_0(self, attn: Attention, hidden_states, *args, **kwargs):
|
224 |
+
self_cls_name = self.__class__.__name__
|
225 |
+
deprecate(
|
226 |
+
self_cls_name,
|
227 |
+
"0.26.0",
|
228 |
+
(
|
229 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
230 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
231 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
232 |
+
),
|
233 |
+
)
|
234 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
235 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
236 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
237 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
238 |
+
|
239 |
+
attn._modules.pop("processor")
|
240 |
+
attn.processor = AttnProcessor2_0()
|
241 |
+
|
242 |
+
if hasattr(self, "store_attn_map"):
|
243 |
+
attn.processor.store_attn_map = True
|
244 |
+
|
245 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
246 |
+
|
247 |
+
|
248 |
+
def cross_attn_init():
|
249 |
+
AttnProcessor.__call__ = attn_call
|
250 |
+
AttnProcessor2_0.__call__ = attn_call # attn_call is faster
|
251 |
+
# AttnProcessor2_0.__call__ = attn_call2_0
|
252 |
+
LoRAAttnProcessor.__call__ = lora_attn_call
|
253 |
+
# LoRAAttnProcessor2_0.__call__ = lora_attn_call2_0
|
254 |
+
LoRAAttnProcessor2_0.__call__ = lora_attn_call
|
255 |
+
|
256 |
+
|
257 |
+
def reshape_attn_map(attn_map):
|
258 |
+
attn_map = torch.mean(attn_map,dim=0) # mean by head dim: (20,4096,77) -> (4096,77)
|
259 |
+
attn_map = attn_map.permute(1,0) # (4096,77) -> (77,4096)
|
260 |
+
latent_size = int(math.sqrt(attn_map.shape[1]))
|
261 |
+
latent_shape = (attn_map.shape[0],latent_size,-1)
|
262 |
+
attn_map = attn_map.reshape(latent_shape) # (77,4096) -> (77,64,64)
|
263 |
+
|
264 |
+
return attn_map # torch.sum(attn_map,dim=0) = [1,1,...,1]
|
265 |
+
|
266 |
+
|
267 |
+
def hook_fn(name):
|
268 |
+
def forward_hook(module, input, output):
|
269 |
+
if hasattr(module.processor, "attn_map"):
|
270 |
+
attn_maps[name] = module.processor.attn_map
|
271 |
+
del module.processor.attn_map
|
272 |
+
|
273 |
+
return forward_hook
|
274 |
+
|
275 |
+
def register_cross_attention_hook(unet):
|
276 |
+
for name, module in unet.named_modules():
|
277 |
+
if not name.split('.')[-1].startswith('attn2'):
|
278 |
+
continue
|
279 |
+
|
280 |
+
if isinstance(module.processor, AttnProcessor):
|
281 |
+
module.processor.store_attn_map = True
|
282 |
+
elif isinstance(module.processor, AttnProcessor2_0):
|
283 |
+
module.processor.store_attn_map = True
|
284 |
+
elif isinstance(module.processor, LoRAAttnProcessor):
|
285 |
+
module.processor.store_attn_map = True
|
286 |
+
elif isinstance(module.processor, LoRAAttnProcessor2_0):
|
287 |
+
module.processor.store_attn_map = True
|
288 |
+
|
289 |
+
hook = module.register_forward_hook(hook_fn(name))
|
290 |
+
|
291 |
+
return unet
|
292 |
+
|
293 |
+
|
294 |
+
def prompt2tokens(tokenizer, prompt):
|
295 |
+
text_inputs = tokenizer(
|
296 |
+
prompt,
|
297 |
+
padding="max_length",
|
298 |
+
max_length=tokenizer.model_max_length,
|
299 |
+
truncation=True,
|
300 |
+
return_tensors="pt",
|
301 |
+
)
|
302 |
+
text_input_ids = text_inputs.input_ids
|
303 |
+
tokens = []
|
304 |
+
for text_input_id in text_input_ids[0]:
|
305 |
+
token = tokenizer.decoder[text_input_id.item()]
|
306 |
+
tokens.append(token)
|
307 |
+
return tokens
|
308 |
+
|
309 |
+
|
310 |
+
# TODO: generalize for rectangle images
|
311 |
+
def upscale(attn_map, target_size):
|
312 |
+
attn_map = torch.mean(attn_map, dim=0) # (10, 32*32, 77) -> (32*32, 77)
|
313 |
+
attn_map = attn_map.permute(1,0) # (32*32, 77) -> (77, 32*32)
|
314 |
+
|
315 |
+
if target_size[0]*target_size[1] != attn_map.shape[1]:
|
316 |
+
temp_size = (target_size[0]//2, target_size[1]//2)
|
317 |
+
attn_map = attn_map.view(attn_map.shape[0], *temp_size) # (77, 32,32)
|
318 |
+
attn_map = attn_map.unsqueeze(0) # (77,32,32) -> (1,77,32,32)
|
319 |
+
|
320 |
+
attn_map = F.interpolate(
|
321 |
+
attn_map.to(dtype=torch.float32),
|
322 |
+
size=target_size,
|
323 |
+
mode='bilinear',
|
324 |
+
align_corners=False
|
325 |
+
).squeeze() # (77,64,64)
|
326 |
+
else:
|
327 |
+
attn_map = attn_map.to(dtype=torch.float32) # (77,64,64)
|
328 |
+
|
329 |
+
attn_map = torch.softmax(attn_map, dim=0)
|
330 |
+
attn_map = attn_map.reshape(attn_map.shape[0],-1) # (77,64*64)
|
331 |
+
return attn_map
|
332 |
+
|
333 |
+
|
334 |
+
def get_net_attn_map(image_size, batch_size=2, instance_or_negative=False, detach=True):
|
335 |
+
target_size = (image_size[0]//16, image_size[1]//16)
|
336 |
+
idx = 0 if instance_or_negative else 1
|
337 |
+
net_attn_maps = []
|
338 |
+
|
339 |
+
for name, attn_map in attn_maps.items():
|
340 |
+
attn_map = attn_map.cpu() if detach else attn_map
|
341 |
+
attn_map = torch.chunk(attn_map, batch_size)[idx] # (20, 32*32, 77) -> (10, 32*32, 77) # negative & positive CFG
|
342 |
+
if len(attn_map.shape) == 4:
|
343 |
+
attn_map = attn_map.squeeze()
|
344 |
+
|
345 |
+
attn_map = upscale(attn_map, target_size) # (10,32*32,77) -> (77,64*64)
|
346 |
+
net_attn_maps.append(attn_map) # (10,32*32,77) -> (77,64*64)
|
347 |
+
|
348 |
+
net_attn_maps = torch.mean(torch.stack(net_attn_maps,dim=0),dim=0)
|
349 |
+
net_attn_maps = net_attn_maps.reshape(net_attn_maps.shape[0], 64,64) # (77,64*64) -> (77,64,64)
|
350 |
+
|
351 |
+
return net_attn_maps
|
352 |
+
|
353 |
+
|
354 |
+
def save_net_attn_map(net_attn_maps, dir_name, tokenizer, prompt):
|
355 |
+
if not os.path.exists(dir_name):
|
356 |
+
os.makedirs(dir_name)
|
357 |
+
|
358 |
+
tokens = prompt2tokens(tokenizer, prompt)
|
359 |
+
total_attn_scores = 0
|
360 |
+
for i, (token, attn_map) in enumerate(zip(tokens, net_attn_maps)):
|
361 |
+
attn_map_score = torch.sum(attn_map)
|
362 |
+
attn_map = attn_map.cpu().numpy()
|
363 |
+
h,w = attn_map.shape
|
364 |
+
attn_map_total = h*w
|
365 |
+
attn_map_score = attn_map_score / attn_map_total
|
366 |
+
total_attn_scores += attn_map_score
|
367 |
+
token = token.replace('</w>','')
|
368 |
+
save_attn_map(
|
369 |
+
attn_map,
|
370 |
+
f'{token}:{attn_map_score:.2f}',
|
371 |
+
f"{dir_name}/{i}_<{token}>:{int(attn_map_score*100)}.png"
|
372 |
+
)
|
373 |
+
print(f'total_attn_scores: {total_attn_scores}')
|
374 |
+
|
375 |
+
|
376 |
+
def resize_net_attn_map(net_attn_maps, target_size):
|
377 |
+
net_attn_maps = F.interpolate(
|
378 |
+
net_attn_maps.to(dtype=torch.float32).unsqueeze(0),
|
379 |
+
size=target_size,
|
380 |
+
mode='bilinear',
|
381 |
+
align_corners=False
|
382 |
+
).squeeze() # (77,64,64)
|
383 |
+
return net_attn_maps
|
384 |
+
|
385 |
+
|
386 |
+
def save_attn_map(attn_map, title, save_path):
|
387 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
388 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
389 |
+
image = Image.fromarray(normalized_attn_map)
|
390 |
+
image.save(save_path, format='PNG', compression=0)
|
391 |
+
|
392 |
+
|
393 |
+
def return_net_attn_map(net_attn_maps, tokenizer, prompt):
|
394 |
+
|
395 |
+
tokens = prompt2tokens(tokenizer, prompt)
|
396 |
+
total_attn_scores = 0
|
397 |
+
images = []
|
398 |
+
for i, (token, attn_map) in enumerate(zip(tokens, net_attn_maps)):
|
399 |
+
attn_map_score = torch.sum(attn_map)
|
400 |
+
h,w = attn_map.shape
|
401 |
+
attn_map_total = h*w
|
402 |
+
attn_map_score = attn_map_score / attn_map_total
|
403 |
+
total_attn_scores += attn_map_score
|
404 |
+
|
405 |
+
attn_map = attn_map.cpu().numpy()
|
406 |
+
normalized_attn_map = (attn_map - np.min(attn_map)) / (np.max(attn_map) - np.min(attn_map)) * 255
|
407 |
+
normalized_attn_map = normalized_attn_map.astype(np.uint8)
|
408 |
+
image = Image.fromarray(normalized_attn_map)
|
409 |
+
|
410 |
+
token = token.replace('</w>','')
|
411 |
+
images.append((image,f"{i}_<{token}>"))
|
412 |
+
print(f'total_attn_scores: {total_attn_scores}')
|
413 |
+
return images
|