wooyeolbaek
commited on
Add SD3
Browse files
app.py
CHANGED
@@ -1,25 +1,25 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from diffusers import
|
4 |
from utils import (
|
5 |
-
cross_attn_init,
|
6 |
-
register_cross_attention_hook,
|
7 |
attn_maps,
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
)
|
12 |
# from transformers.utils.hub import move_cache
|
13 |
|
14 |
# move_cache()
|
15 |
|
16 |
cross_attn_init()
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
torch_dtype=torch.
|
21 |
)
|
22 |
-
|
|
|
|
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
pipe = pipe.to(device)
|
25 |
|
@@ -29,15 +29,10 @@ def inference(prompt):
|
|
29 |
prompt,
|
30 |
num_inference_steps=15,
|
31 |
).images[0]
|
32 |
-
net_attn_maps = get_net_attn_map(image.size)
|
33 |
-
net_attn_maps = resize_net_attn_map(net_attn_maps, image.size)
|
34 |
-
net_attn_maps = return_net_attn_map(net_attn_maps, pipe.tokenizer, prompt)
|
35 |
|
36 |
-
|
37 |
-
net_attn_maps = [attn_map for attn_map in net_attn_maps if attn_map[1].split('_')[-1] != "<<|startoftext|>>"]
|
38 |
-
net_attn_maps = [attn_map for attn_map in net_attn_maps if attn_map[1].split('_')[-1] != "<<|endoftext|>>"]
|
39 |
|
40 |
-
return image,
|
41 |
|
42 |
|
43 |
with gr.Blocks() as demo:
|
@@ -46,8 +41,7 @@ with gr.Blocks() as demo:
|
|
46 |
# 🚀 Text-to-Image Cross Attention Map for 🧨 Diffusers ⚡
|
47 |
"""
|
48 |
)
|
49 |
-
|
50 |
-
prompt = gr.Textbox(value="A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says 'SDXL'!.", label="Prompt", lines=2)
|
51 |
btn = gr.Button("Generate images", scale=0)
|
52 |
|
53 |
with gr.Row():
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from diffusers import StableDiffusion3Pipeline
|
4 |
from utils import (
|
|
|
|
|
5 |
attn_maps,
|
6 |
+
cross_attn_init,
|
7 |
+
init_pipeline,
|
8 |
+
save_attention_maps
|
9 |
)
|
10 |
# from transformers.utils.hub import move_cache
|
11 |
|
12 |
# move_cache()
|
13 |
|
14 |
cross_attn_init()
|
15 |
+
|
16 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
17 |
+
"stabilityai/stable-diffusion-3-medium-diffusers",
|
18 |
+
torch_dtype=torch.bfloat16
|
19 |
)
|
20 |
+
|
21 |
+
pipe = init_pipeline(pipe)
|
22 |
+
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
pipe = pipe.to(device)
|
25 |
|
|
|
29 |
prompt,
|
30 |
num_inference_steps=15,
|
31 |
).images[0]
|
|
|
|
|
|
|
32 |
|
33 |
+
total_attn_maps = save_attention_maps(attn_maps, tokenizer, prompts)
|
|
|
|
|
34 |
|
35 |
+
return image, total_attn_maps
|
36 |
|
37 |
|
38 |
with gr.Blocks() as demo:
|
|
|
41 |
# 🚀 Text-to-Image Cross Attention Map for 🧨 Diffusers ⚡
|
42 |
"""
|
43 |
)
|
44 |
+
prompt = gr.Textbox(value="A capybara holding a sign that reads Hello World.", label="Prompt", lines=2)
|
|
|
45 |
btn = gr.Button("Generate images", scale=0)
|
46 |
|
47 |
with gr.Row():
|