wooyeolbaek
commited on
Create modules.py
Browse files- modules.py +1757 -0
modules.py
ADDED
@@ -0,0 +1,1757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import inspect
|
3 |
+
import numpy as np
|
4 |
+
from typing import Any, Dict, Optional, Tuple, Union, List, Callable
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
from diffusers.models.attention import _chunked_feed_forward
|
11 |
+
from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
|
12 |
+
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
|
13 |
+
from diffusers.pipelines.flux.pipeline_flux import (
|
14 |
+
retrieve_timesteps,
|
15 |
+
replace_example_docstring,
|
16 |
+
EXAMPLE_DOC_STRING,
|
17 |
+
calculate_shift,
|
18 |
+
XLA_AVAILABLE,
|
19 |
+
FluxPipelineOutput
|
20 |
+
)
|
21 |
+
# from diffusers.models.transformers import FLUXTransformer2DModel
|
22 |
+
from diffusers.utils import (
|
23 |
+
deprecate,
|
24 |
+
BaseOutput,
|
25 |
+
is_torch_version,
|
26 |
+
logging,
|
27 |
+
USE_PEFT_BACKEND,
|
28 |
+
scale_lora_layers,
|
29 |
+
unscale_lora_layers,
|
30 |
+
)
|
31 |
+
from diffusers.models.attention_processor import (
|
32 |
+
Attention,
|
33 |
+
AttnProcessor,
|
34 |
+
AttnProcessor2_0,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
attn_maps = {}
|
42 |
+
|
43 |
+
|
44 |
+
@torch.no_grad()
|
45 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
46 |
+
def FluxPipeline_call(
|
47 |
+
self,
|
48 |
+
prompt: Union[str, List[str]] = None,
|
49 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
50 |
+
height: Optional[int] = None,
|
51 |
+
width: Optional[int] = None,
|
52 |
+
num_inference_steps: int = 28,
|
53 |
+
timesteps: List[int] = None,
|
54 |
+
guidance_scale: float = 3.5,
|
55 |
+
num_images_per_prompt: Optional[int] = 1,
|
56 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
57 |
+
latents: Optional[torch.FloatTensor] = None,
|
58 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
59 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
60 |
+
output_type: Optional[str] = "pil",
|
61 |
+
return_dict: bool = True,
|
62 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
63 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
64 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
65 |
+
max_sequence_length: int = 512,
|
66 |
+
):
|
67 |
+
r"""
|
68 |
+
Function invoked when calling the pipeline for generation.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
prompt (`str` or `List[str]`, *optional*):
|
72 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
73 |
+
instead.
|
74 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
75 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
76 |
+
will be used instead
|
77 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
78 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
79 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
80 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
81 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
82 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
83 |
+
expense of slower inference.
|
84 |
+
timesteps (`List[int]`, *optional*):
|
85 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
86 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
87 |
+
passed will be used. Must be in descending order.
|
88 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
89 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
90 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
91 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
92 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
93 |
+
usually at the expense of lower image quality.
|
94 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
95 |
+
The number of images to generate per prompt.
|
96 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
97 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
98 |
+
to make generation deterministic.
|
99 |
+
latents (`torch.FloatTensor`, *optional*):
|
100 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
101 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
102 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
103 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
104 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
105 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
106 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
107 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
108 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
109 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
110 |
+
The output format of the generate image. Choose between
|
111 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
112 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
113 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
114 |
+
joint_attention_kwargs (`dict`, *optional*):
|
115 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
116 |
+
`self.processor` in
|
117 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
118 |
+
callback_on_step_end (`Callable`, *optional*):
|
119 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
120 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
121 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
122 |
+
`callback_on_step_end_tensor_inputs`.
|
123 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
124 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
125 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
126 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
127 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
128 |
+
|
129 |
+
Examples:
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
133 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
134 |
+
images.
|
135 |
+
"""
|
136 |
+
|
137 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
138 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
139 |
+
|
140 |
+
# 1. Check inputs. Raise error if not correct
|
141 |
+
self.check_inputs(
|
142 |
+
prompt,
|
143 |
+
prompt_2,
|
144 |
+
height,
|
145 |
+
width,
|
146 |
+
prompt_embeds=prompt_embeds,
|
147 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
148 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
149 |
+
max_sequence_length=max_sequence_length,
|
150 |
+
)
|
151 |
+
|
152 |
+
self._guidance_scale = guidance_scale
|
153 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
154 |
+
self._interrupt = False
|
155 |
+
|
156 |
+
# 2. Define call parameters
|
157 |
+
if prompt is not None and isinstance(prompt, str):
|
158 |
+
batch_size = 1
|
159 |
+
elif prompt is not None and isinstance(prompt, list):
|
160 |
+
batch_size = len(prompt)
|
161 |
+
else:
|
162 |
+
batch_size = prompt_embeds.shape[0]
|
163 |
+
|
164 |
+
device = self._execution_device
|
165 |
+
|
166 |
+
lora_scale = (
|
167 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
168 |
+
)
|
169 |
+
(
|
170 |
+
prompt_embeds,
|
171 |
+
pooled_prompt_embeds,
|
172 |
+
text_ids,
|
173 |
+
) = self.encode_prompt(
|
174 |
+
prompt=prompt,
|
175 |
+
prompt_2=prompt_2,
|
176 |
+
prompt_embeds=prompt_embeds,
|
177 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
178 |
+
device=device,
|
179 |
+
num_images_per_prompt=num_images_per_prompt,
|
180 |
+
max_sequence_length=max_sequence_length,
|
181 |
+
lora_scale=lora_scale,
|
182 |
+
)
|
183 |
+
|
184 |
+
# 4. Prepare latent variables
|
185 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
186 |
+
latents, latent_image_ids = self.prepare_latents(
|
187 |
+
batch_size * num_images_per_prompt,
|
188 |
+
num_channels_latents,
|
189 |
+
height,
|
190 |
+
width,
|
191 |
+
prompt_embeds.dtype,
|
192 |
+
device,
|
193 |
+
generator,
|
194 |
+
latents,
|
195 |
+
)
|
196 |
+
|
197 |
+
# 5. Prepare timesteps
|
198 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
199 |
+
image_seq_len = latents.shape[1]
|
200 |
+
mu = calculate_shift(
|
201 |
+
image_seq_len,
|
202 |
+
self.scheduler.config.base_image_seq_len,
|
203 |
+
self.scheduler.config.max_image_seq_len,
|
204 |
+
self.scheduler.config.base_shift,
|
205 |
+
self.scheduler.config.max_shift,
|
206 |
+
)
|
207 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
208 |
+
self.scheduler,
|
209 |
+
num_inference_steps,
|
210 |
+
device,
|
211 |
+
timesteps,
|
212 |
+
sigmas,
|
213 |
+
mu=mu,
|
214 |
+
)
|
215 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
216 |
+
self._num_timesteps = len(timesteps)
|
217 |
+
|
218 |
+
# handle guidance
|
219 |
+
if self.transformer.config.guidance_embeds:
|
220 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
221 |
+
guidance = guidance.expand(latents.shape[0])
|
222 |
+
else:
|
223 |
+
guidance = None
|
224 |
+
|
225 |
+
# 6. Denoising loop
|
226 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
227 |
+
for i, t in enumerate(timesteps):
|
228 |
+
if self.interrupt:
|
229 |
+
continue
|
230 |
+
|
231 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
232 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
233 |
+
|
234 |
+
noise_pred = self.transformer(
|
235 |
+
hidden_states=latents,
|
236 |
+
timestep=timestep / 1000,
|
237 |
+
guidance=guidance,
|
238 |
+
pooled_projections=pooled_prompt_embeds,
|
239 |
+
encoder_hidden_states=prompt_embeds,
|
240 |
+
txt_ids=text_ids,
|
241 |
+
img_ids=latent_image_ids,
|
242 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
243 |
+
return_dict=False,
|
244 |
+
##################################################
|
245 |
+
height=height,
|
246 |
+
##################################################
|
247 |
+
)[0]
|
248 |
+
|
249 |
+
# compute the previous noisy sample x_t -> x_t-1
|
250 |
+
latents_dtype = latents.dtype
|
251 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
252 |
+
|
253 |
+
if latents.dtype != latents_dtype:
|
254 |
+
if torch.backends.mps.is_available():
|
255 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
256 |
+
latents = latents.to(latents_dtype)
|
257 |
+
|
258 |
+
if callback_on_step_end is not None:
|
259 |
+
callback_kwargs = {}
|
260 |
+
for k in callback_on_step_end_tensor_inputs:
|
261 |
+
callback_kwargs[k] = locals()[k]
|
262 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
263 |
+
|
264 |
+
latents = callback_outputs.pop("latents", latents)
|
265 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
266 |
+
|
267 |
+
# call the callback, if provided
|
268 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
269 |
+
progress_bar.update()
|
270 |
+
|
271 |
+
if XLA_AVAILABLE:
|
272 |
+
xm.mark_step()
|
273 |
+
|
274 |
+
if output_type == "latent":
|
275 |
+
image = latents
|
276 |
+
|
277 |
+
else:
|
278 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
279 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
280 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
281 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
282 |
+
|
283 |
+
# Offload all models
|
284 |
+
self.maybe_free_model_hooks()
|
285 |
+
|
286 |
+
if not return_dict:
|
287 |
+
return (image,)
|
288 |
+
|
289 |
+
return FluxPipelineOutput(images=image)
|
290 |
+
|
291 |
+
|
292 |
+
def UNet2DConditionModelForward(
|
293 |
+
self,
|
294 |
+
sample: torch.Tensor,
|
295 |
+
timestep: Union[torch.Tensor, float, int],
|
296 |
+
encoder_hidden_states: torch.Tensor,
|
297 |
+
class_labels: Optional[torch.Tensor] = None,
|
298 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
299 |
+
attention_mask: Optional[torch.Tensor] = None,
|
300 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
301 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
302 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
303 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
304 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
305 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
306 |
+
return_dict: bool = True,
|
307 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
308 |
+
r"""
|
309 |
+
The [`UNet2DConditionModel`] forward method.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
sample (`torch.Tensor`):
|
313 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
314 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
315 |
+
encoder_hidden_states (`torch.Tensor`):
|
316 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
317 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
318 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
319 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
320 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
321 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
322 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
323 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
324 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
325 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
326 |
+
cross_attention_kwargs (`dict`, *optional*):
|
327 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
328 |
+
`self.processor` in
|
329 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
330 |
+
added_cond_kwargs: (`dict`, *optional*):
|
331 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
332 |
+
are passed along to the UNet blocks.
|
333 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
334 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
335 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
336 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
337 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
338 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
339 |
+
encoder_attention_mask (`torch.Tensor`):
|
340 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
341 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
342 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
343 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
344 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
345 |
+
tuple.
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
349 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
350 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
351 |
+
"""
|
352 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
353 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
354 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
355 |
+
# on the fly if necessary.
|
356 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
357 |
+
|
358 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
359 |
+
forward_upsample_size = False
|
360 |
+
upsample_size = None
|
361 |
+
|
362 |
+
for dim in sample.shape[-2:]:
|
363 |
+
if dim % default_overall_up_factor != 0:
|
364 |
+
# Forward upsample size to force interpolation output size.
|
365 |
+
forward_upsample_size = True
|
366 |
+
break
|
367 |
+
|
368 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
369 |
+
# expects mask of shape:
|
370 |
+
# [batch, key_tokens]
|
371 |
+
# adds singleton query_tokens dimension:
|
372 |
+
# [batch, 1, key_tokens]
|
373 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
374 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
375 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
376 |
+
if attention_mask is not None:
|
377 |
+
# assume that mask is expressed as:
|
378 |
+
# (1 = keep, 0 = discard)
|
379 |
+
# convert mask into a bias that can be added to attention scores:
|
380 |
+
# (keep = +0, discard = -10000.0)
|
381 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
382 |
+
attention_mask = attention_mask.unsqueeze(1)
|
383 |
+
|
384 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
385 |
+
if encoder_attention_mask is not None:
|
386 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
387 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
388 |
+
|
389 |
+
# 0. center input if necessary
|
390 |
+
if self.config.center_input_sample:
|
391 |
+
sample = 2 * sample - 1.0
|
392 |
+
|
393 |
+
# 1. time
|
394 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
395 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
396 |
+
aug_emb = None
|
397 |
+
|
398 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
399 |
+
if class_emb is not None:
|
400 |
+
if self.config.class_embeddings_concat:
|
401 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
402 |
+
else:
|
403 |
+
emb = emb + class_emb
|
404 |
+
|
405 |
+
aug_emb = self.get_aug_embed(
|
406 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
407 |
+
)
|
408 |
+
if self.config.addition_embed_type == "image_hint":
|
409 |
+
aug_emb, hint = aug_emb
|
410 |
+
sample = torch.cat([sample, hint], dim=1)
|
411 |
+
|
412 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
413 |
+
|
414 |
+
if self.time_embed_act is not None:
|
415 |
+
emb = self.time_embed_act(emb)
|
416 |
+
|
417 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
418 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
419 |
+
)
|
420 |
+
|
421 |
+
# 2. pre-process
|
422 |
+
sample = self.conv_in(sample)
|
423 |
+
|
424 |
+
# 2.5 GLIGEN position net
|
425 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
426 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
427 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
428 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
429 |
+
|
430 |
+
# 3. down
|
431 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
432 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
433 |
+
################################################################################
|
434 |
+
if cross_attention_kwargs is None:
|
435 |
+
cross_attention_kwargs = {'timestep' : timestep}
|
436 |
+
else:
|
437 |
+
cross_attention_kwargs['timestep'] = timestep
|
438 |
+
################################################################################
|
439 |
+
|
440 |
+
|
441 |
+
if cross_attention_kwargs is not None:
|
442 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
443 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
444 |
+
else:
|
445 |
+
lora_scale = 1.0
|
446 |
+
|
447 |
+
if USE_PEFT_BACKEND:
|
448 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
449 |
+
scale_lora_layers(self, lora_scale)
|
450 |
+
|
451 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
452 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
453 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
454 |
+
# maintain backward compatibility for legacy usage, where
|
455 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
456 |
+
# but can only use one or the other
|
457 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
458 |
+
deprecate(
|
459 |
+
"T2I should not use down_block_additional_residuals",
|
460 |
+
"1.3.0",
|
461 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
462 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
463 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
464 |
+
standard_warn=False,
|
465 |
+
)
|
466 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
467 |
+
is_adapter = True
|
468 |
+
|
469 |
+
down_block_res_samples = (sample,)
|
470 |
+
for downsample_block in self.down_blocks:
|
471 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
472 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
473 |
+
additional_residuals = {}
|
474 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
475 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
476 |
+
|
477 |
+
sample, res_samples = downsample_block(
|
478 |
+
hidden_states=sample,
|
479 |
+
temb=emb,
|
480 |
+
encoder_hidden_states=encoder_hidden_states,
|
481 |
+
attention_mask=attention_mask,
|
482 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
483 |
+
encoder_attention_mask=encoder_attention_mask,
|
484 |
+
**additional_residuals,
|
485 |
+
)
|
486 |
+
else:
|
487 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
488 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
489 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
490 |
+
|
491 |
+
down_block_res_samples += res_samples
|
492 |
+
|
493 |
+
if is_controlnet:
|
494 |
+
new_down_block_res_samples = ()
|
495 |
+
|
496 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
497 |
+
down_block_res_samples, down_block_additional_residuals
|
498 |
+
):
|
499 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
500 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
501 |
+
|
502 |
+
down_block_res_samples = new_down_block_res_samples
|
503 |
+
|
504 |
+
# 4. mid
|
505 |
+
if self.mid_block is not None:
|
506 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
507 |
+
sample = self.mid_block(
|
508 |
+
sample,
|
509 |
+
emb,
|
510 |
+
encoder_hidden_states=encoder_hidden_states,
|
511 |
+
attention_mask=attention_mask,
|
512 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
513 |
+
encoder_attention_mask=encoder_attention_mask,
|
514 |
+
)
|
515 |
+
else:
|
516 |
+
sample = self.mid_block(sample, emb)
|
517 |
+
|
518 |
+
# To support T2I-Adapter-XL
|
519 |
+
if (
|
520 |
+
is_adapter
|
521 |
+
and len(down_intrablock_additional_residuals) > 0
|
522 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
523 |
+
):
|
524 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
525 |
+
|
526 |
+
if is_controlnet:
|
527 |
+
sample = sample + mid_block_additional_residual
|
528 |
+
|
529 |
+
# 5. up
|
530 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
531 |
+
is_final_block = i == len(self.up_blocks) - 1
|
532 |
+
|
533 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
534 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
535 |
+
|
536 |
+
# if we have not reached the final block and need to forward the
|
537 |
+
# upsample size, we do it here
|
538 |
+
if not is_final_block and forward_upsample_size:
|
539 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
540 |
+
|
541 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
542 |
+
sample = upsample_block(
|
543 |
+
hidden_states=sample,
|
544 |
+
temb=emb,
|
545 |
+
res_hidden_states_tuple=res_samples,
|
546 |
+
encoder_hidden_states=encoder_hidden_states,
|
547 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
548 |
+
upsample_size=upsample_size,
|
549 |
+
attention_mask=attention_mask,
|
550 |
+
encoder_attention_mask=encoder_attention_mask,
|
551 |
+
)
|
552 |
+
else:
|
553 |
+
sample = upsample_block(
|
554 |
+
hidden_states=sample,
|
555 |
+
temb=emb,
|
556 |
+
res_hidden_states_tuple=res_samples,
|
557 |
+
upsample_size=upsample_size,
|
558 |
+
)
|
559 |
+
|
560 |
+
# 6. post-process
|
561 |
+
if self.conv_norm_out:
|
562 |
+
sample = self.conv_norm_out(sample)
|
563 |
+
sample = self.conv_act(sample)
|
564 |
+
sample = self.conv_out(sample)
|
565 |
+
|
566 |
+
if USE_PEFT_BACKEND:
|
567 |
+
# remove `lora_scale` from each PEFT layer
|
568 |
+
unscale_lora_layers(self, lora_scale)
|
569 |
+
|
570 |
+
if not return_dict:
|
571 |
+
return (sample,)
|
572 |
+
|
573 |
+
return UNet2DConditionOutput(sample=sample)
|
574 |
+
|
575 |
+
|
576 |
+
def SD3Transformer2DModelForward(
|
577 |
+
self,
|
578 |
+
hidden_states: torch.FloatTensor,
|
579 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
580 |
+
pooled_projections: torch.FloatTensor = None,
|
581 |
+
timestep: torch.LongTensor = None,
|
582 |
+
block_controlnet_hidden_states: List = None,
|
583 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
584 |
+
return_dict: bool = True,
|
585 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
586 |
+
"""
|
587 |
+
The [`SD3Transformer2DModel`] forward method.
|
588 |
+
|
589 |
+
Args:
|
590 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
591 |
+
Input `hidden_states`.
|
592 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
593 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
594 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
595 |
+
from the embeddings of input conditions.
|
596 |
+
timestep ( `torch.LongTensor`):
|
597 |
+
Used to indicate denoising step.
|
598 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
599 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
600 |
+
joint_attention_kwargs (`dict`, *optional*):
|
601 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
602 |
+
`self.processor` in
|
603 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
604 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
605 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
606 |
+
tuple.
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
610 |
+
`tuple` where the first element is the sample tensor.
|
611 |
+
"""
|
612 |
+
if joint_attention_kwargs is not None:
|
613 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
614 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
615 |
+
else:
|
616 |
+
lora_scale = 1.0
|
617 |
+
|
618 |
+
if USE_PEFT_BACKEND:
|
619 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
620 |
+
scale_lora_layers(self, lora_scale)
|
621 |
+
else:
|
622 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
623 |
+
logger.warning(
|
624 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
625 |
+
)
|
626 |
+
|
627 |
+
height, width = hidden_states.shape[-2:]
|
628 |
+
|
629 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
630 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
631 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
632 |
+
|
633 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
634 |
+
if self.training and self.gradient_checkpointing:
|
635 |
+
|
636 |
+
def create_custom_forward(module, return_dict=None):
|
637 |
+
def custom_forward(*inputs):
|
638 |
+
if return_dict is not None:
|
639 |
+
return module(*inputs, return_dict=return_dict)
|
640 |
+
else:
|
641 |
+
return module(*inputs)
|
642 |
+
|
643 |
+
return custom_forward
|
644 |
+
|
645 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
646 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
647 |
+
create_custom_forward(block),
|
648 |
+
hidden_states,
|
649 |
+
encoder_hidden_states,
|
650 |
+
temb,
|
651 |
+
**ckpt_kwargs,
|
652 |
+
)
|
653 |
+
|
654 |
+
else:
|
655 |
+
encoder_hidden_states, hidden_states = block(
|
656 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb,
|
657 |
+
##########################################################################################
|
658 |
+
timestep=timestep, height=height // self.config.patch_size,
|
659 |
+
##########################################################################################
|
660 |
+
)
|
661 |
+
|
662 |
+
# controlnet residual
|
663 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
664 |
+
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
665 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
666 |
+
|
667 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
668 |
+
hidden_states = self.proj_out(hidden_states)
|
669 |
+
|
670 |
+
# unpatchify
|
671 |
+
patch_size = self.config.patch_size
|
672 |
+
height = height // patch_size
|
673 |
+
width = width // patch_size
|
674 |
+
|
675 |
+
hidden_states = hidden_states.reshape(
|
676 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
677 |
+
)
|
678 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
679 |
+
output = hidden_states.reshape(
|
680 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
681 |
+
)
|
682 |
+
|
683 |
+
if USE_PEFT_BACKEND:
|
684 |
+
# remove `lora_scale` from each PEFT layer
|
685 |
+
unscale_lora_layers(self, lora_scale)
|
686 |
+
|
687 |
+
if not return_dict:
|
688 |
+
return (output,)
|
689 |
+
|
690 |
+
return Transformer2DModelOutput(sample=output)
|
691 |
+
|
692 |
+
|
693 |
+
def FluxTransformer2DModelForward(
|
694 |
+
self,
|
695 |
+
hidden_states: torch.Tensor,
|
696 |
+
encoder_hidden_states: torch.Tensor = None,
|
697 |
+
pooled_projections: torch.Tensor = None,
|
698 |
+
timestep: torch.LongTensor = None,
|
699 |
+
img_ids: torch.Tensor = None,
|
700 |
+
txt_ids: torch.Tensor = None,
|
701 |
+
guidance: torch.Tensor = None,
|
702 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
703 |
+
controlnet_block_samples=None,
|
704 |
+
controlnet_single_block_samples=None,
|
705 |
+
return_dict: bool = True,
|
706 |
+
controlnet_blocks_repeat: bool = False,
|
707 |
+
##################################################
|
708 |
+
height: int = None,
|
709 |
+
##################################################
|
710 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
711 |
+
"""
|
712 |
+
The [`FluxTransformer2DModel`] forward method.
|
713 |
+
|
714 |
+
Args:
|
715 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
716 |
+
Input `hidden_states`.
|
717 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
718 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
719 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
720 |
+
from the embeddings of input conditions.
|
721 |
+
timestep ( `torch.LongTensor`):
|
722 |
+
Used to indicate denoising step.
|
723 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
724 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
725 |
+
joint_attention_kwargs (`dict`, *optional*):
|
726 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
727 |
+
`self.processor` in
|
728 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
729 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
730 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
731 |
+
tuple.
|
732 |
+
|
733 |
+
Returns:
|
734 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
735 |
+
`tuple` where the first element is the sample tensor.
|
736 |
+
"""
|
737 |
+
if joint_attention_kwargs is not None:
|
738 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
739 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
740 |
+
else:
|
741 |
+
lora_scale = 1.0
|
742 |
+
|
743 |
+
if USE_PEFT_BACKEND:
|
744 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
745 |
+
scale_lora_layers(self, lora_scale)
|
746 |
+
else:
|
747 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
748 |
+
logger.warning(
|
749 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
750 |
+
)
|
751 |
+
hidden_states = self.x_embedder(hidden_states)
|
752 |
+
|
753 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
754 |
+
if guidance is not None:
|
755 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
756 |
+
else:
|
757 |
+
guidance = None
|
758 |
+
temb = (
|
759 |
+
self.time_text_embed(timestep, pooled_projections)
|
760 |
+
if guidance is None
|
761 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
762 |
+
)
|
763 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
764 |
+
|
765 |
+
if txt_ids.ndim == 3:
|
766 |
+
logger.warning(
|
767 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
768 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
769 |
+
)
|
770 |
+
txt_ids = txt_ids[0]
|
771 |
+
if img_ids.ndim == 3:
|
772 |
+
logger.warning(
|
773 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
774 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
775 |
+
)
|
776 |
+
img_ids = img_ids[0]
|
777 |
+
|
778 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
779 |
+
image_rotary_emb = self.pos_embed(ids)
|
780 |
+
|
781 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
782 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
783 |
+
|
784 |
+
def create_custom_forward(module, return_dict=None):
|
785 |
+
def custom_forward(*inputs):
|
786 |
+
if return_dict is not None:
|
787 |
+
return module(*inputs, return_dict=return_dict)
|
788 |
+
else:
|
789 |
+
return module(*inputs)
|
790 |
+
|
791 |
+
return custom_forward
|
792 |
+
|
793 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
794 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
795 |
+
create_custom_forward(block),
|
796 |
+
hidden_states,
|
797 |
+
encoder_hidden_states,
|
798 |
+
temb,
|
799 |
+
image_rotary_emb,
|
800 |
+
**ckpt_kwargs,
|
801 |
+
)
|
802 |
+
|
803 |
+
else:
|
804 |
+
encoder_hidden_states, hidden_states = block(
|
805 |
+
hidden_states=hidden_states,
|
806 |
+
encoder_hidden_states=encoder_hidden_states,
|
807 |
+
temb=temb,
|
808 |
+
image_rotary_emb=image_rotary_emb,
|
809 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
810 |
+
##########################################################################################
|
811 |
+
timestep=timestep, height=height // self.config.patch_size,
|
812 |
+
##########################################################################################
|
813 |
+
)
|
814 |
+
|
815 |
+
# controlnet residual
|
816 |
+
if controlnet_block_samples is not None:
|
817 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
818 |
+
interval_control = int(np.ceil(interval_control))
|
819 |
+
# For Xlabs ControlNet.
|
820 |
+
if controlnet_blocks_repeat:
|
821 |
+
hidden_states = (
|
822 |
+
hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
|
823 |
+
)
|
824 |
+
else:
|
825 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
826 |
+
|
827 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
828 |
+
|
829 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
830 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
831 |
+
|
832 |
+
def create_custom_forward(module, return_dict=None):
|
833 |
+
def custom_forward(*inputs):
|
834 |
+
if return_dict is not None:
|
835 |
+
return module(*inputs, return_dict=return_dict)
|
836 |
+
else:
|
837 |
+
return module(*inputs)
|
838 |
+
|
839 |
+
return custom_forward
|
840 |
+
|
841 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
842 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
843 |
+
create_custom_forward(block),
|
844 |
+
hidden_states,
|
845 |
+
temb,
|
846 |
+
image_rotary_emb,
|
847 |
+
**ckpt_kwargs,
|
848 |
+
)
|
849 |
+
|
850 |
+
else:
|
851 |
+
hidden_states = block(
|
852 |
+
hidden_states=hidden_states,
|
853 |
+
temb=temb,
|
854 |
+
image_rotary_emb=image_rotary_emb,
|
855 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
856 |
+
)
|
857 |
+
|
858 |
+
# controlnet residual
|
859 |
+
if controlnet_single_block_samples is not None:
|
860 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
861 |
+
interval_control = int(np.ceil(interval_control))
|
862 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
863 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
864 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
865 |
+
)
|
866 |
+
|
867 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
868 |
+
|
869 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
870 |
+
output = self.proj_out(hidden_states)
|
871 |
+
|
872 |
+
if USE_PEFT_BACKEND:
|
873 |
+
# remove `lora_scale` from each PEFT layer
|
874 |
+
unscale_lora_layers(self, lora_scale)
|
875 |
+
|
876 |
+
if not return_dict:
|
877 |
+
return (output,)
|
878 |
+
|
879 |
+
return Transformer2DModelOutput(sample=output)
|
880 |
+
|
881 |
+
|
882 |
+
def Transformer2DModelForward(
|
883 |
+
self,
|
884 |
+
hidden_states: torch.Tensor,
|
885 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
886 |
+
timestep: Optional[torch.LongTensor] = None,
|
887 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
888 |
+
class_labels: Optional[torch.LongTensor] = None,
|
889 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
890 |
+
attention_mask: Optional[torch.Tensor] = None,
|
891 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
892 |
+
return_dict: bool = True,
|
893 |
+
):
|
894 |
+
"""
|
895 |
+
The [`Transformer2DModel`] forward method.
|
896 |
+
|
897 |
+
Args:
|
898 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
899 |
+
Input `hidden_states`.
|
900 |
+
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
901 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
902 |
+
self-attention.
|
903 |
+
timestep ( `torch.LongTensor`, *optional*):
|
904 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
905 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
906 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
907 |
+
`AdaLayerZeroNorm`.
|
908 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
909 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
910 |
+
`self.processor` in
|
911 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
912 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
913 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
914 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
915 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
916 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
917 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
918 |
+
|
919 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
920 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
921 |
+
|
922 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
923 |
+
above. This bias will be added to the cross-attention scores.
|
924 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
925 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
926 |
+
tuple.
|
927 |
+
|
928 |
+
Returns:
|
929 |
+
If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned,
|
930 |
+
otherwise a `tuple` where the first element is the sample tensor.
|
931 |
+
"""
|
932 |
+
if cross_attention_kwargs is not None:
|
933 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
934 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
935 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
936 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
937 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
938 |
+
# expects mask of shape:
|
939 |
+
# [batch, key_tokens]
|
940 |
+
# adds singleton query_tokens dimension:
|
941 |
+
# [batch, 1, key_tokens]
|
942 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
943 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
944 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
945 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
946 |
+
# assume that mask is expressed as:
|
947 |
+
# (1 = keep, 0 = discard)
|
948 |
+
# convert mask into a bias that can be added to attention scores:
|
949 |
+
# (keep = +0, discard = -10000.0)
|
950 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
951 |
+
attention_mask = attention_mask.unsqueeze(1)
|
952 |
+
|
953 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
954 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
955 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
956 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
957 |
+
|
958 |
+
# 1. Input
|
959 |
+
if self.is_input_continuous:
|
960 |
+
batch_size, _, height, width = hidden_states.shape
|
961 |
+
residual = hidden_states
|
962 |
+
hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states)
|
963 |
+
elif self.is_input_vectorized:
|
964 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
965 |
+
elif self.is_input_patches:
|
966 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
967 |
+
hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs(
|
968 |
+
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs
|
969 |
+
)
|
970 |
+
|
971 |
+
####################################################################################################
|
972 |
+
cross_attention_kwargs['height'] = height
|
973 |
+
cross_attention_kwargs['width'] = width
|
974 |
+
####################################################################################################
|
975 |
+
|
976 |
+
# 2. Blocks
|
977 |
+
for block in self.transformer_blocks:
|
978 |
+
if self.training and self.gradient_checkpointing:
|
979 |
+
|
980 |
+
def create_custom_forward(module, return_dict=None):
|
981 |
+
def custom_forward(*inputs):
|
982 |
+
if return_dict is not None:
|
983 |
+
return module(*inputs, return_dict=return_dict)
|
984 |
+
else:
|
985 |
+
return module(*inputs)
|
986 |
+
|
987 |
+
return custom_forward
|
988 |
+
|
989 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
990 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
991 |
+
create_custom_forward(block),
|
992 |
+
hidden_states,
|
993 |
+
attention_mask,
|
994 |
+
encoder_hidden_states,
|
995 |
+
encoder_attention_mask,
|
996 |
+
timestep,
|
997 |
+
cross_attention_kwargs,
|
998 |
+
class_labels,
|
999 |
+
**ckpt_kwargs,
|
1000 |
+
)
|
1001 |
+
else:
|
1002 |
+
hidden_states = block(
|
1003 |
+
hidden_states,
|
1004 |
+
attention_mask=attention_mask,
|
1005 |
+
encoder_hidden_states=encoder_hidden_states,
|
1006 |
+
encoder_attention_mask=encoder_attention_mask,
|
1007 |
+
timestep=timestep,
|
1008 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1009 |
+
class_labels=class_labels,
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
# 3. Output
|
1013 |
+
if self.is_input_continuous:
|
1014 |
+
output = self._get_output_for_continuous_inputs(
|
1015 |
+
hidden_states=hidden_states,
|
1016 |
+
residual=residual,
|
1017 |
+
batch_size=batch_size,
|
1018 |
+
height=height,
|
1019 |
+
width=width,
|
1020 |
+
inner_dim=inner_dim,
|
1021 |
+
)
|
1022 |
+
elif self.is_input_vectorized:
|
1023 |
+
output = self._get_output_for_vectorized_inputs(hidden_states)
|
1024 |
+
elif self.is_input_patches:
|
1025 |
+
output = self._get_output_for_patched_inputs(
|
1026 |
+
hidden_states=hidden_states,
|
1027 |
+
timestep=timestep,
|
1028 |
+
class_labels=class_labels,
|
1029 |
+
embedded_timestep=embedded_timestep,
|
1030 |
+
height=height,
|
1031 |
+
width=width,
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
if not return_dict:
|
1035 |
+
return (output,)
|
1036 |
+
|
1037 |
+
return Transformer2DModelOutput(sample=output)
|
1038 |
+
|
1039 |
+
|
1040 |
+
def BasicTransformerBlockForward(
|
1041 |
+
self,
|
1042 |
+
hidden_states: torch.Tensor,
|
1043 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1044 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1045 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1046 |
+
timestep: Optional[torch.LongTensor] = None,
|
1047 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1048 |
+
class_labels: Optional[torch.LongTensor] = None,
|
1049 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1050 |
+
) -> torch.Tensor:
|
1051 |
+
if cross_attention_kwargs is not None:
|
1052 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
1053 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1054 |
+
|
1055 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1056 |
+
# 0. Self-Attention
|
1057 |
+
batch_size = hidden_states.shape[0]
|
1058 |
+
|
1059 |
+
if self.norm_type == "ada_norm":
|
1060 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
1061 |
+
elif self.norm_type == "ada_norm_zero":
|
1062 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
1063 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
1064 |
+
)
|
1065 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
1066 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1067 |
+
elif self.norm_type == "ada_norm_continuous":
|
1068 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
1069 |
+
elif self.norm_type == "ada_norm_single":
|
1070 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
1071 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
1072 |
+
).chunk(6, dim=1)
|
1073 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1074 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
1075 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
1076 |
+
else:
|
1077 |
+
raise ValueError("Incorrect norm used")
|
1078 |
+
|
1079 |
+
if self.pos_embed is not None:
|
1080 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1081 |
+
|
1082 |
+
# 1. Prepare GLIGEN inputs
|
1083 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
1084 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
1085 |
+
|
1086 |
+
################################################################################
|
1087 |
+
attn_parameters = set(inspect.signature(self.attn1.processor.__call__).parameters.keys())
|
1088 |
+
################################################################################
|
1089 |
+
|
1090 |
+
attn_output = self.attn1(
|
1091 |
+
norm_hidden_states,
|
1092 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1093 |
+
attention_mask=attention_mask,
|
1094 |
+
################################################################################
|
1095 |
+
**{k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters},
|
1096 |
+
################################################################################
|
1097 |
+
)
|
1098 |
+
if self.norm_type == "ada_norm_zero":
|
1099 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1100 |
+
elif self.norm_type == "ada_norm_single":
|
1101 |
+
attn_output = gate_msa * attn_output
|
1102 |
+
|
1103 |
+
hidden_states = attn_output + hidden_states
|
1104 |
+
if hidden_states.ndim == 4:
|
1105 |
+
hidden_states = hidden_states.squeeze(1)
|
1106 |
+
|
1107 |
+
# 1.2 GLIGEN Control
|
1108 |
+
if gligen_kwargs is not None:
|
1109 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
1110 |
+
|
1111 |
+
# 3. Cross-Attention
|
1112 |
+
if self.attn2 is not None:
|
1113 |
+
if self.norm_type == "ada_norm":
|
1114 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
1115 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
1116 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1117 |
+
elif self.norm_type == "ada_norm_single":
|
1118 |
+
# For PixArt norm2 isn't applied here:
|
1119 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
1120 |
+
norm_hidden_states = hidden_states
|
1121 |
+
elif self.norm_type == "ada_norm_continuous":
|
1122 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
1123 |
+
else:
|
1124 |
+
raise ValueError("Incorrect norm")
|
1125 |
+
|
1126 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
1127 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1128 |
+
|
1129 |
+
attn_output = self.attn2(
|
1130 |
+
norm_hidden_states,
|
1131 |
+
encoder_hidden_states=encoder_hidden_states,
|
1132 |
+
attention_mask=encoder_attention_mask,
|
1133 |
+
**cross_attention_kwargs,
|
1134 |
+
)
|
1135 |
+
hidden_states = attn_output + hidden_states
|
1136 |
+
|
1137 |
+
# 4. Feed-forward
|
1138 |
+
# i2vgen doesn't have this norm 🤷♂️
|
1139 |
+
if self.norm_type == "ada_norm_continuous":
|
1140 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
1141 |
+
elif not self.norm_type == "ada_norm_single":
|
1142 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1143 |
+
|
1144 |
+
if self.norm_type == "ada_norm_zero":
|
1145 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1146 |
+
|
1147 |
+
if self.norm_type == "ada_norm_single":
|
1148 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1149 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
1150 |
+
|
1151 |
+
if self._chunk_size is not None:
|
1152 |
+
# "feed_forward_chunk_size" can be used to save memory
|
1153 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1154 |
+
else:
|
1155 |
+
ff_output = self.ff(norm_hidden_states)
|
1156 |
+
|
1157 |
+
if self.norm_type == "ada_norm_zero":
|
1158 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1159 |
+
elif self.norm_type == "ada_norm_single":
|
1160 |
+
ff_output = gate_mlp * ff_output
|
1161 |
+
|
1162 |
+
hidden_states = ff_output + hidden_states
|
1163 |
+
if hidden_states.ndim == 4:
|
1164 |
+
hidden_states = hidden_states.squeeze(1)
|
1165 |
+
|
1166 |
+
return hidden_states
|
1167 |
+
|
1168 |
+
|
1169 |
+
def JointTransformerBlockForward(
|
1170 |
+
self,
|
1171 |
+
hidden_states: torch.FloatTensor,
|
1172 |
+
encoder_hidden_states: torch.FloatTensor,
|
1173 |
+
temb: torch.FloatTensor,
|
1174 |
+
############################################################
|
1175 |
+
height: int = None,
|
1176 |
+
timestep: Optional[torch.Tensor] = None,
|
1177 |
+
############################################################
|
1178 |
+
):
|
1179 |
+
if self.use_dual_attention:
|
1180 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
1181 |
+
hidden_states, emb=temb
|
1182 |
+
)
|
1183 |
+
else:
|
1184 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
1185 |
+
|
1186 |
+
if self.context_pre_only:
|
1187 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
1188 |
+
else:
|
1189 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
1190 |
+
encoder_hidden_states, emb=temb
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
# Attention.
|
1194 |
+
attn_output, context_attn_output = self.attn(
|
1195 |
+
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
|
1196 |
+
############################################################
|
1197 |
+
timestep=timestep, height=height,
|
1198 |
+
############################################################
|
1199 |
+
)
|
1200 |
+
|
1201 |
+
# Process attention outputs for the `hidden_states`.
|
1202 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1203 |
+
hidden_states = hidden_states + attn_output
|
1204 |
+
|
1205 |
+
if self.use_dual_attention:
|
1206 |
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2)
|
1207 |
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
1208 |
+
hidden_states = hidden_states + attn_output2
|
1209 |
+
|
1210 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1211 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1212 |
+
if self._chunk_size is not None:
|
1213 |
+
# "feed_forward_chunk_size" can be used to save memory
|
1214 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1215 |
+
else:
|
1216 |
+
ff_output = self.ff(norm_hidden_states)
|
1217 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1218 |
+
|
1219 |
+
hidden_states = hidden_states + ff_output
|
1220 |
+
|
1221 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
1222 |
+
if self.context_pre_only:
|
1223 |
+
encoder_hidden_states = None
|
1224 |
+
else:
|
1225 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
1226 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
1227 |
+
|
1228 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
1229 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
1230 |
+
if self._chunk_size is not None:
|
1231 |
+
# "feed_forward_chunk_size" can be used to save memory
|
1232 |
+
context_ff_output = _chunked_feed_forward(
|
1233 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
1234 |
+
)
|
1235 |
+
else:
|
1236 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
1237 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
1238 |
+
|
1239 |
+
return encoder_hidden_states, hidden_states
|
1240 |
+
|
1241 |
+
|
1242 |
+
def FluxTransformerBlockForward(
|
1243 |
+
self,
|
1244 |
+
hidden_states: torch.FloatTensor,
|
1245 |
+
encoder_hidden_states: torch.FloatTensor,
|
1246 |
+
temb: torch.FloatTensor,
|
1247 |
+
image_rotary_emb=None,
|
1248 |
+
joint_attention_kwargs=None,
|
1249 |
+
############################################################
|
1250 |
+
height: int = None,
|
1251 |
+
timestep: Optional[torch.Tensor] = None,
|
1252 |
+
############################################################
|
1253 |
+
):
|
1254 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
1255 |
+
|
1256 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
1257 |
+
encoder_hidden_states, emb=temb
|
1258 |
+
)
|
1259 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
1260 |
+
# Attention.
|
1261 |
+
attn_output, context_attn_output = self.attn(
|
1262 |
+
hidden_states=norm_hidden_states,
|
1263 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
1264 |
+
image_rotary_emb=image_rotary_emb,
|
1265 |
+
############################################################
|
1266 |
+
timestep=timestep, height=height,
|
1267 |
+
############################################################
|
1268 |
+
**joint_attention_kwargs,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
# Process attention outputs for the `hidden_states`.
|
1272 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
1273 |
+
hidden_states = hidden_states + attn_output
|
1274 |
+
|
1275 |
+
norm_hidden_states = self.norm2(hidden_states)
|
1276 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
1277 |
+
|
1278 |
+
ff_output = self.ff(norm_hidden_states)
|
1279 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
1280 |
+
|
1281 |
+
hidden_states = hidden_states + ff_output
|
1282 |
+
|
1283 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
1284 |
+
|
1285 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
1286 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
1287 |
+
|
1288 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
1289 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
1290 |
+
|
1291 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
1292 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
1293 |
+
if encoder_hidden_states.dtype == torch.float16:
|
1294 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
1295 |
+
|
1296 |
+
return encoder_hidden_states, hidden_states
|
1297 |
+
|
1298 |
+
|
1299 |
+
def attn_call(
|
1300 |
+
self,
|
1301 |
+
attn: Attention,
|
1302 |
+
hidden_states: torch.Tensor,
|
1303 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1304 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1305 |
+
temb: Optional[torch.Tensor] = None,
|
1306 |
+
height: int = None,
|
1307 |
+
width: int = None,
|
1308 |
+
timestep: Optional[torch.Tensor] = None,
|
1309 |
+
*args,
|
1310 |
+
**kwargs,
|
1311 |
+
) -> torch.Tensor:
|
1312 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1313 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1314 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
1315 |
+
|
1316 |
+
residual = hidden_states
|
1317 |
+
|
1318 |
+
if attn.spatial_norm is not None:
|
1319 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1320 |
+
|
1321 |
+
input_ndim = hidden_states.ndim
|
1322 |
+
|
1323 |
+
if input_ndim == 4:
|
1324 |
+
batch_size, channel, height, width = hidden_states.shape
|
1325 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1326 |
+
|
1327 |
+
batch_size, sequence_length, _ = (
|
1328 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1329 |
+
)
|
1330 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1331 |
+
|
1332 |
+
if attn.group_norm is not None:
|
1333 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1334 |
+
|
1335 |
+
query = attn.to_q(hidden_states)
|
1336 |
+
|
1337 |
+
if encoder_hidden_states is None:
|
1338 |
+
encoder_hidden_states = hidden_states
|
1339 |
+
elif attn.norm_cross:
|
1340 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1341 |
+
|
1342 |
+
key = attn.to_k(encoder_hidden_states)
|
1343 |
+
value = attn.to_v(encoder_hidden_states)
|
1344 |
+
|
1345 |
+
query = attn.head_to_batch_dim(query)
|
1346 |
+
key = attn.head_to_batch_dim(key)
|
1347 |
+
value = attn.head_to_batch_dim(value)
|
1348 |
+
|
1349 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1350 |
+
####################################################################################################
|
1351 |
+
if hasattr(self, "store_attn_map"):
|
1352 |
+
self.attn_map = rearrange(attention_probs, 'b (h w) d -> b d h w', h=height)
|
1353 |
+
self.timestep = int(timestep.item())
|
1354 |
+
####################################################################################################
|
1355 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1356 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1357 |
+
|
1358 |
+
# linear proj
|
1359 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1360 |
+
# dropout
|
1361 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1362 |
+
|
1363 |
+
if input_ndim == 4:
|
1364 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1365 |
+
|
1366 |
+
if attn.residual_connection:
|
1367 |
+
hidden_states = hidden_states + residual
|
1368 |
+
|
1369 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1370 |
+
|
1371 |
+
return hidden_states
|
1372 |
+
|
1373 |
+
|
1374 |
+
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
1375 |
+
# Efficient implementation equivalent to the following:
|
1376 |
+
L, S = query.size(-2), key.size(-2)
|
1377 |
+
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
1378 |
+
attn_bias = torch.zeros(L, S, dtype=query.dtype)
|
1379 |
+
if is_causal:
|
1380 |
+
assert attn_mask is None
|
1381 |
+
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
1382 |
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
1383 |
+
attn_bias.to(query.dtype)
|
1384 |
+
|
1385 |
+
if attn_mask is not None:
|
1386 |
+
if attn_mask.dtype == torch.bool:
|
1387 |
+
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
1388 |
+
else:
|
1389 |
+
attn_bias += attn_mask
|
1390 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
1391 |
+
attn_weight += attn_bias.to(attn_weight.device)
|
1392 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
1393 |
+
|
1394 |
+
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
|
1395 |
+
|
1396 |
+
|
1397 |
+
def attn_call2_0(
|
1398 |
+
self,
|
1399 |
+
attn: Attention,
|
1400 |
+
hidden_states: torch.Tensor,
|
1401 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1402 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1403 |
+
temb: Optional[torch.Tensor] = None,
|
1404 |
+
height: int = None,
|
1405 |
+
width: int = None,
|
1406 |
+
timestep: Optional[torch.Tensor] = None,
|
1407 |
+
*args,
|
1408 |
+
**kwargs,
|
1409 |
+
) -> torch.Tensor:
|
1410 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1411 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1412 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
1413 |
+
|
1414 |
+
residual = hidden_states
|
1415 |
+
if attn.spatial_norm is not None:
|
1416 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1417 |
+
|
1418 |
+
input_ndim = hidden_states.ndim
|
1419 |
+
|
1420 |
+
if input_ndim == 4:
|
1421 |
+
batch_size, channel, height, width = hidden_states.shape
|
1422 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1423 |
+
|
1424 |
+
batch_size, sequence_length, _ = (
|
1425 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
if attention_mask is not None:
|
1429 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1430 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1431 |
+
# (batch, heads, source_length, target_length)
|
1432 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1433 |
+
|
1434 |
+
if attn.group_norm is not None:
|
1435 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1436 |
+
|
1437 |
+
query = attn.to_q(hidden_states)
|
1438 |
+
|
1439 |
+
if encoder_hidden_states is None:
|
1440 |
+
encoder_hidden_states = hidden_states
|
1441 |
+
elif attn.norm_cross:
|
1442 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1443 |
+
|
1444 |
+
key = attn.to_k(encoder_hidden_states)
|
1445 |
+
value = attn.to_v(encoder_hidden_states)
|
1446 |
+
|
1447 |
+
inner_dim = key.shape[-1]
|
1448 |
+
head_dim = inner_dim // attn.heads
|
1449 |
+
|
1450 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1451 |
+
|
1452 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1453 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1454 |
+
|
1455 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1456 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1457 |
+
####################################################################################################
|
1458 |
+
if hasattr(self, "store_attn_map"):
|
1459 |
+
hidden_states, attention_probs = scaled_dot_product_attention(
|
1460 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1461 |
+
)
|
1462 |
+
self.attn_map = rearrange(attention_probs, 'batch attn_head (h w) attn_dim -> batch attn_head h w attn_dim ', h=height) # detach height*width
|
1463 |
+
self.timestep = int(timestep.item())
|
1464 |
+
else:
|
1465 |
+
hidden_states = F.scaled_dot_product_attention(
|
1466 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1467 |
+
)
|
1468 |
+
####################################################################################################
|
1469 |
+
|
1470 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # (b,attn_head,h*w,attn_dim) -> (b,h*w,attn_head*attn_dim)
|
1471 |
+
hidden_states = hidden_states.to(query.dtype)
|
1472 |
+
|
1473 |
+
# linear proj
|
1474 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1475 |
+
# dropout
|
1476 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1477 |
+
|
1478 |
+
if input_ndim == 4:
|
1479 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1480 |
+
|
1481 |
+
if attn.residual_connection:
|
1482 |
+
hidden_states = hidden_states + residual
|
1483 |
+
|
1484 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1485 |
+
|
1486 |
+
return hidden_states
|
1487 |
+
|
1488 |
+
|
1489 |
+
def lora_attn_call(self, attn: Attention, hidden_states, height, width, *args, **kwargs):
|
1490 |
+
self_cls_name = self.__class__.__name__
|
1491 |
+
deprecate(
|
1492 |
+
self_cls_name,
|
1493 |
+
"0.26.0",
|
1494 |
+
(
|
1495 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1496 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1497 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1498 |
+
),
|
1499 |
+
)
|
1500 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1501 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1502 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1503 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1504 |
+
|
1505 |
+
attn._modules.pop("processor")
|
1506 |
+
attn.processor = AttnProcessor()
|
1507 |
+
####################################################################################################
|
1508 |
+
attn.processor.__call__ = attn_call.__get__(attn.processor, AttnProcessor)
|
1509 |
+
####################################################################################################
|
1510 |
+
|
1511 |
+
if hasattr(self, "store_attn_map"):
|
1512 |
+
attn.processor.store_attn_map = True
|
1513 |
+
|
1514 |
+
return attn.processor(attn, hidden_states, height, width, *args, **kwargs)
|
1515 |
+
|
1516 |
+
|
1517 |
+
def lora_attn_call2_0(self, attn: Attention, hidden_states, height, width, *args, **kwargs):
|
1518 |
+
self_cls_name = self.__class__.__name__
|
1519 |
+
deprecate(
|
1520 |
+
self_cls_name,
|
1521 |
+
"0.26.0",
|
1522 |
+
(
|
1523 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1524 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1525 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1526 |
+
),
|
1527 |
+
)
|
1528 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1529 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1530 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1531 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1532 |
+
|
1533 |
+
attn._modules.pop("processor")
|
1534 |
+
attn.processor = AttnProcessor2_0()
|
1535 |
+
####################################################################################################
|
1536 |
+
attn.processor.__call__ = attn_call.__get__(attn.processor, AttnProcessor2_0)
|
1537 |
+
####################################################################################################
|
1538 |
+
|
1539 |
+
if hasattr(self, "store_attn_map"):
|
1540 |
+
attn.processor.store_attn_map = True
|
1541 |
+
|
1542 |
+
return attn.processor(attn, hidden_states, height, width, *args, **kwargs)
|
1543 |
+
|
1544 |
+
|
1545 |
+
def joint_attn_call2_0(
|
1546 |
+
self,
|
1547 |
+
attn: Attention,
|
1548 |
+
hidden_states: torch.FloatTensor,
|
1549 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
1550 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1551 |
+
############################################################
|
1552 |
+
height: int = None,
|
1553 |
+
timestep: Optional[torch.Tensor] = None,
|
1554 |
+
############################################################
|
1555 |
+
*args,
|
1556 |
+
**kwargs,
|
1557 |
+
) -> torch.FloatTensor:
|
1558 |
+
residual = hidden_states
|
1559 |
+
|
1560 |
+
batch_size = hidden_states.shape[0]
|
1561 |
+
|
1562 |
+
# `sample` projections.
|
1563 |
+
query = attn.to_q(hidden_states)
|
1564 |
+
key = attn.to_k(hidden_states)
|
1565 |
+
value = attn.to_v(hidden_states)
|
1566 |
+
|
1567 |
+
inner_dim = key.shape[-1]
|
1568 |
+
head_dim = inner_dim // attn.heads
|
1569 |
+
|
1570 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1571 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1572 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1573 |
+
|
1574 |
+
if attn.norm_q is not None:
|
1575 |
+
query = attn.norm_q(query)
|
1576 |
+
if attn.norm_k is not None:
|
1577 |
+
key = attn.norm_k(key)
|
1578 |
+
|
1579 |
+
# `context` projections.
|
1580 |
+
if encoder_hidden_states is not None:
|
1581 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
1582 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
1583 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
1584 |
+
|
1585 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
1586 |
+
batch_size, -1, attn.heads, head_dim
|
1587 |
+
).transpose(1, 2)
|
1588 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
1589 |
+
batch_size, -1, attn.heads, head_dim
|
1590 |
+
).transpose(1, 2)
|
1591 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
1592 |
+
batch_size, -1, attn.heads, head_dim
|
1593 |
+
).transpose(1, 2)
|
1594 |
+
|
1595 |
+
if attn.norm_added_q is not None:
|
1596 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
1597 |
+
if attn.norm_added_k is not None:
|
1598 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
1599 |
+
|
1600 |
+
query = torch.cat([query, encoder_hidden_states_query_proj], dim=2)
|
1601 |
+
key = torch.cat([key, encoder_hidden_states_key_proj], dim=2)
|
1602 |
+
value = torch.cat([value, encoder_hidden_states_value_proj], dim=2)
|
1603 |
+
|
1604 |
+
####################################################################################################
|
1605 |
+
if hasattr(self, "store_attn_map"):
|
1606 |
+
hidden_states, attention_probs = scaled_dot_product_attention(
|
1607 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1608 |
+
)
|
1609 |
+
|
1610 |
+
image_length = query.shape[2] - encoder_hidden_states_query_proj.shape[2]
|
1611 |
+
|
1612 |
+
# (4,24,4429,4429) -> (4,24,4096,333)
|
1613 |
+
attention_probs = attention_probs[:,:,:image_length,image_length:].cpu()
|
1614 |
+
|
1615 |
+
self.attn_map = rearrange(
|
1616 |
+
attention_probs,
|
1617 |
+
'batch attn_head (height width) attn_dim -> batch attn_head height width attn_dim',
|
1618 |
+
height = height
|
1619 |
+
) # (4, 24, 4096, 333) -> (4, 24, height, width, 333)
|
1620 |
+
self.timestep = timestep[0].cpu().item() # TODO: int -> list
|
1621 |
+
else:
|
1622 |
+
hidden_states = F.scaled_dot_product_attention(
|
1623 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1624 |
+
)
|
1625 |
+
####################################################################################################
|
1626 |
+
|
1627 |
+
# hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
1628 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1629 |
+
hidden_states = hidden_states.to(query.dtype)
|
1630 |
+
|
1631 |
+
if encoder_hidden_states is not None:
|
1632 |
+
# Split the attention outputs.
|
1633 |
+
hidden_states, encoder_hidden_states = (
|
1634 |
+
hidden_states[:, : residual.shape[1]],
|
1635 |
+
hidden_states[:, residual.shape[1] :],
|
1636 |
+
)
|
1637 |
+
if not attn.context_pre_only:
|
1638 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
1639 |
+
|
1640 |
+
# linear proj
|
1641 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1642 |
+
# dropout
|
1643 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1644 |
+
|
1645 |
+
if encoder_hidden_states is not None:
|
1646 |
+
return hidden_states, encoder_hidden_states
|
1647 |
+
else:
|
1648 |
+
return hidden_states
|
1649 |
+
|
1650 |
+
|
1651 |
+
# FluxAttnProcessor2_0
|
1652 |
+
def flux_attn_call2_0(
|
1653 |
+
self,
|
1654 |
+
attn: Attention,
|
1655 |
+
hidden_states: torch.FloatTensor,
|
1656 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
1657 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1658 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
1659 |
+
############################################################
|
1660 |
+
height: int = None,
|
1661 |
+
timestep: Optional[torch.Tensor] = None,
|
1662 |
+
############################################################
|
1663 |
+
) -> torch.FloatTensor:
|
1664 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1665 |
+
|
1666 |
+
# `sample` projections.
|
1667 |
+
query = attn.to_q(hidden_states)
|
1668 |
+
key = attn.to_k(hidden_states)
|
1669 |
+
value = attn.to_v(hidden_states)
|
1670 |
+
|
1671 |
+
inner_dim = key.shape[-1]
|
1672 |
+
head_dim = inner_dim // attn.heads
|
1673 |
+
|
1674 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1675 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1676 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1677 |
+
|
1678 |
+
if attn.norm_q is not None:
|
1679 |
+
query = attn.norm_q(query)
|
1680 |
+
if attn.norm_k is not None:
|
1681 |
+
key = attn.norm_k(key)
|
1682 |
+
|
1683 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
1684 |
+
if encoder_hidden_states is not None:
|
1685 |
+
# `context` projections.
|
1686 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
1687 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
1688 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
1689 |
+
|
1690 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
1691 |
+
batch_size, -1, attn.heads, head_dim
|
1692 |
+
).transpose(1, 2)
|
1693 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
1694 |
+
batch_size, -1, attn.heads, head_dim
|
1695 |
+
).transpose(1, 2)
|
1696 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
1697 |
+
batch_size, -1, attn.heads, head_dim
|
1698 |
+
).transpose(1, 2)
|
1699 |
+
|
1700 |
+
if attn.norm_added_q is not None:
|
1701 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
1702 |
+
if attn.norm_added_k is not None:
|
1703 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
1704 |
+
|
1705 |
+
# attention
|
1706 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
1707 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
1708 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
1709 |
+
|
1710 |
+
if image_rotary_emb is not None:
|
1711 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
1712 |
+
|
1713 |
+
|
1714 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
1715 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
1716 |
+
|
1717 |
+
####################################################################################################
|
1718 |
+
if hasattr(self, "store_attn_map"):
|
1719 |
+
hidden_states, attention_probs = scaled_dot_product_attention(
|
1720 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1721 |
+
)
|
1722 |
+
|
1723 |
+
image_length = query.shape[2] - encoder_hidden_states_query_proj.shape[2]
|
1724 |
+
|
1725 |
+
# (4,24,4429,4429) -> (4,24,4096,333)
|
1726 |
+
attention_probs = attention_probs[:,:,:image_length,image_length:].cpu()
|
1727 |
+
|
1728 |
+
self.attn_map = rearrange(
|
1729 |
+
attention_probs,
|
1730 |
+
'batch attn_head (height width) attn_dim -> batch attn_head height width attn_dim',
|
1731 |
+
height = height
|
1732 |
+
) # (4, 24, 4096, 333) -> (4, 24, height, width, 333)
|
1733 |
+
self.timestep = timestep[0].cpu().item() # TODO: int -> list
|
1734 |
+
else:
|
1735 |
+
hidden_states = F.scaled_dot_product_attention(
|
1736 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1737 |
+
)
|
1738 |
+
####################################################################################################
|
1739 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1740 |
+
hidden_states = hidden_states.to(query.dtype)
|
1741 |
+
|
1742 |
+
if encoder_hidden_states is not None:
|
1743 |
+
encoder_hidden_states, hidden_states = (
|
1744 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
1745 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
1746 |
+
)
|
1747 |
+
|
1748 |
+
# linear proj
|
1749 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1750 |
+
# dropout
|
1751 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1752 |
+
|
1753 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
1754 |
+
|
1755 |
+
return hidden_states, encoder_hidden_states
|
1756 |
+
else:
|
1757 |
+
return hidden_states
|