llm_uw25winter / app.py
EricYuhui's picture
Update app.py
9f694ec verified
raw
history blame
13.6 kB
### Import necessary libraries: here you will use streamlit library to run a text search demo, please make sure to install it.
# !pip install streamlit sentence-transformers gdown matplotlib
# !pip install pyngrok
import subprocess
subprocess.run([
"pip", "install",
"streamlit",
"sentence-transformers",
"gdown",
"matplotlib",
"tf-keras" # 添加 tf-keras 到依赖列表
], check=True)
import streamlit as st
import numpy as np
import numpy.linalg as la
import pickle
import os
import gdown
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import math
import os
import subprocess
### Some predefined utility functions for you to load the text embeddings
# Function to Load Glove Embeddings
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
with open(glove_path, "rb") as f:
embeddings_dict = pickle.load(f, encoding="latin1")
return embeddings_dict
def get_model_id_gdrive(model_type):
if model_type == "25d":
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
elif model_type == "50d":
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
elif model_type == "100d":
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
return word_index_id, embeddings_id
def download_glove_embeddings_gdrive(model_type):
# Get glove embeddings from google drive
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
# Use gdown to get files from google drive
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
# Download word_index pickle file
print("Downloading word index dictionary....\n")
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
# Download embeddings numpy file
print("Donwloading embedings...\n\n")
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
# @st.cache_data()
def load_glove_embeddings_gdrive(model_type):
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
# Load word index dictionary
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
# Load embeddings numpy
embeddings = np.load(embeddings_temp)
return word_index_dict, embeddings
@st.cache_resource()
def load_sentence_transformer_model(model_name):
sentenceTransformer = SentenceTransformer(model_name)
return sentenceTransformer
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
"""
Get sentence transformer embeddings for a sentence
"""
# 384 dimensional embedding
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
sentenceTransformer = load_sentence_transformer_model(model_name)
try:
return sentenceTransformer.encode(sentence)
except:
if model_name == "all-MiniLM-L6-v2":
return np.zeros(384)
else:
return np.zeros(512)
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
"""
Get glove embedding for a single word
"""
if word.lower() in word_index_dict:
return embeddings[word_index_dict[word.lower()]]
else:
return np.zeros(int(model_type.split("d")[0]))
def get_category_embeddings(embeddings_metadata):
"""
Get embeddings for each category
1. Split categories into words
2. Get embeddings for each word
"""
model_name = embeddings_metadata["model_name"]
st.session_state["cat_embed_" + model_name] = {}
for category in st.session_state.categories.split(" "):
if model_name:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
else:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
def update_category_embeddings(embeddings_metadata):
"""
Update embeddings for each category
"""
get_category_embeddings(embeddings_metadata)
### Plotting utility functions
def plot_piechart(sorted_cosine_scores_items):
sorted_cosine_scores = np.array([
sorted_cosine_scores_items[index][1]
for index in range(len(sorted_cosine_scores_items))
]
)
categories = st.session_state.categories.split(" ")
categories_sorted = [
categories[sorted_cosine_scores_items[index][0]]
for index in range(len(sorted_cosine_scores_items))
]
fig, ax = plt.subplots()
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
st.pyplot(fig) # Figure
def plot_piechart_helper(sorted_cosine_scores_items):
sorted_cosine_scores = np.array(
[
sorted_cosine_scores_items[index][1]
for index in range(len(sorted_cosine_scores_items))
]
)
categories = st.session_state.categories.split(" ")
categories_sorted = [
categories[sorted_cosine_scores_items[index][0]]
for index in range(len(sorted_cosine_scores_items))
]
fig, ax = plt.subplots(figsize=(3, 3))
my_explode = np.zeros(len(categories_sorted))
my_explode[0] = 0.2
if len(categories_sorted) == 3:
my_explode[1] = 0.1 # explode this by 0.2
elif len(categories_sorted) > 3:
my_explode[2] = 0.05
ax.pie(
sorted_cosine_scores,
labels=categories_sorted,
autopct="%1.1f%%",
explode=my_explode,
)
return fig
def plot_piecharts(sorted_cosine_scores_models):
scores_list = []
categories = st.session_state.categories.split(" ")
index = 0
for model in sorted_cosine_scores_models:
scores_list.append(sorted_cosine_scores_models[model])
index += 1
if len(sorted_cosine_scores_models) == 2:
fig, (ax1, ax2) = plt.subplots(2)
categories_sorted = [
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
]
sorted_scores = np.array(
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
)
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
categories_sorted = [
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
]
sorted_scores = np.array(
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
)
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
st.pyplot(fig)
def plot_alatirchart(sorted_cosine_scores_models):
models = list(sorted_cosine_scores_models.keys())
tabs = st.tabs(models)
figs = {}
for model in models:
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
for index in range(len(tabs)):
with tabs[index]:
st.pyplot(figs[models[index]])
### Your Part To Complete: Follow the instructions in each function below to complete the similarity calculation between text embeddings
# Task I: Compute Cosine Similarity
def cosine_similarity(x, y):
"""
Exponentiated cosine similarity
1. Compute cosine similarity
2. Exponentiate cosine similarity
3. Return exponentiated cosine similarity
(20 pts)
"""
# 111
cosine_sim = np.dot(x, y) / (la.norm(x) * la.norm(y))
return np.exp(cosine_sim)
# Task II: Average Glove Embedding Calculation
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
"""
Get averaged glove embeddings for a sentence
1. Split sentence into words
2. Get embeddings for each word
3. Add embeddings for each word
4. Divide by number of words
5. Return averaged embeddings
(30 pts)
"""
words = sentence.split()
embedding = np.zeros(int(model_type.split("d")[0]))
for word in words:
embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
return embedding / len(words)
# Task III: Sort the cosine similarity
def get_sorted_cosine_similarity(embeddings_metadata):
"""
Get sorted cosine similarity between input sentence and categories
Steps:
1. Get embeddings for input sentence
2. Get embeddings for categories (if not found, update category embeddings)
3. Compute cosine similarity between input sentence and categories
4. Sort cosine similarity
5. Return sorted cosine similarity
(50 pts)
"""
categories = st.session_state.categories.split(" ")
cosine_sim = {}
if embeddings_metadata["embedding_model"] == "glove":
word_index_dict = embeddings_metadata["word_index_dict"]
embeddings = embeddings_metadata["embeddings"]
model_type = embeddings_metadata["model_type"]
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
word_index_dict,
embeddings, model_type)
for index, category in enumerate(categories):
category_embedding = averaged_glove_embeddings_gdrive(category, word_index_dict, embeddings, model_type)
cosine_sim[index] = cosine_similarity(input_embedding, category_embedding)
else:
model_name = embeddings_metadata["model_name"]
if not "cat_embed_" + model_name in st.session_state:
get_category_embeddings(embeddings_metadata)
category_embeddings = st.session_state["cat_embed_" + model_name]
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
for index, category in enumerate(categories):
cosine_sim[index] = cosine_similarity(input_embedding, category_embeddings[category])
sorted_cosine_sim = sorted(cosine_sim.items(), key=lambda x: x[1], reverse=True)
return sorted_cosine_sim
### Below is the main function, creating the app demo for text search engine using the text embeddings.
if __name__ == "__main__":
# Initialize session state variables
if "categories" not in st.session_state:
st.session_state["categories"] = "Flowers Colors Cars Weather Food"
if "text_search" not in st.session_state:
st.session_state["text_search"] = "Roses are red, trucks are blue, and Seattle is grey right now"
st.sidebar.title("GloVe Twitter")
st.sidebar.markdown(
"""
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
"""
)
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d", "100d"), index=1)
st.title("Search Based Retrieval Demo")
st.subheader(
"Pass in space separated categories you want this search demo to be about."
)
st.text_input(
label="Categories", key="categories", value=st.session_state["categories"]
)
st.subheader("Pass in an input word or even a sentence")
st.text_input(
label="Input your sentence",
key="text_search",
value=st.session_state["text_search"],
)
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
with st.spinner("Downloading glove embeddings..."):
download_glove_embeddings_gdrive(model_type)
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
if st.session_state.text_search:
embeddings_metadata = {
"embedding_model": "glove",
"word_index_dict": word_index_dict,
"embeddings": embeddings,
"model_type": model_type,
}
with st.spinner("Obtaining Cosine similarity for Glove..."):
sorted_cosine_sim_glove = get_sorted_cosine_similarity(embeddings_metadata)
embeddings_metadata = {
"embedding_model": "transformers",
"model_name": "all-MiniLM-L6-v2"
}
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(embeddings_metadata)
st.subheader(
"Closest word I have between: "
+ st.session_state.categories
+ " as per different Embeddings"
)
plot_alatirchart(
{
"glove_" + str(model_type): sorted_cosine_sim_glove,
"sentence_transformer_384": sorted_cosine_sim_transformer,
}
)
st.write("")
st.write(
"Demo developed by [Your Name](https://www.linkedin.com/in/your_id/ - Optional)"
)