fc-simple / app.py
ekhatskevich
fix: tensors
6ef3309
raw
history blame
3.38 kB
import os
import gradio as gr
from scepter.modules.utils.file_system import FS
from huggingface_hub import hf_hub_download
def resolve_hf_path(path):
if isinstance(path, str) and path.startswith("hf://"):
# The expected format is: hf://{repo_id}@{filename}
parts = path[len("hf://"):].split("@")
if len(parts) != 2:
raise ValueError(f"Invalid HF URI format: {path}")
repo_id = parts[0]
filename = parts[1]
print(f"Downloading {filename} from {repo_id} ...")
local_path = hf_hub_download(repo_id=repo_id, filename=filename)
return local_path
return path
os.environ["FLUX_FILL_PATH"] = "hf://black-forest-labs/[email protected]"
os.environ["PORTRAIT_MODEL_PATH"] = "ms://iic/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors"
os.environ["SUBJECT_MODEL_PATH"] = "ms://iic/ACE_Plus@subject/comfyui_subject_lora16.safetensors"
os.environ["LOCAL_MODEL_PATH"] = "ms://iic/ACE_Plus@local_editing/comfyui_local_lora16.safetensors"
os.environ["ACE_PLUS_FFT_MODEL"] = "hf://ali-vilab/ACE_Plus@ace_plus_fft.safetensors"
flux_full = resolve_hf_path(os.environ["FLUX_FILL_PATH"])
ace_plus_fft_model_path = resolve_hf_path(os.environ["ACE_PLUS_FFT_MODEL"])
# Update the environment variables with the resolved local file paths.
os.environ["ACE_PLUS_FFT_MODEL"] = ace_plus_fft_model_path
os.environ["FLUX_FILL_PATH"] = flux_full
from inference.ace_plus_inference import ACEInference
from scepter.modules.utils.config import Config
from modules.flux import FluxMRModiACEPlus
from inference.registry import INFERENCES
config_path = os.path.join("config", "ace_plus_fft.yaml")
cfg = Config(load=True, cfg_file=config_path)
# Instantiate the ACEInference object.
ace_infer = ACEInference(cfg)
def face_swap_app(target_img, face_img):
"""
Swaps the face in the target image using the provided face image via ACE++.
Parameters:
target_img: The image in which you want to swap a face.
face_img: The reference face image to insert.
Returns:
The output image after applying ACE++ face swapping.
"""
# For ACEInference, we pass:
# - reference_image: the target image,
# - edit_image: the new face image,
# - edit_mask: set to None so the image processor will create it,
# - prompt: "Face swap" instructs the model to perform face swapping.
# Other parameters (output dimensions, sampler, etc.) are set here as desired.
output_img, edit_image, change_image, mask, seed = ace_infer(
reference_image=target_img,
edit_image=face_img,
edit_mask=None, # No manual mask provided; let ACE++ handle it
prompt="Face swap",
output_height=1024,
output_width=1024,
sampler='flow_euler',
sample_steps=28,
guide_scale=50,
seed=-1 # Use a random seed if not specified
)
return output_img
# Create the Gradio interface.
iface = gr.Interface(
fn=face_swap_app,
inputs=[
gr.Image(type="pil", label="Target Image"),
gr.Image(type="pil", label="Face Image")
],
outputs=gr.Image(type="pil", label="Swapped Face Output"),
title="ACE++ Face Swap Demo",
description="Upload a target image and a face image to swap the face using the ACE++ model."
)
if __name__ == "__main__":
iface.launch()