fc-simple / inference /utils.py
ekhatskevich
initial commit
9235b7f
raw
history blame
5.37 kB
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import math
import torch
import torchvision.transforms as T
import numpy as np
from scepter.modules.annotator.registry import ANNOTATORS
from scepter.modules.utils.config import Config
from PIL import Image
def edit_preprocess(processor, device, edit_image, edit_mask):
if edit_image is None or processor is None:
return edit_image
processor = Config(cfg_dict=processor, load=False)
processor = ANNOTATORS.build(processor).to(device)
new_edit_image = processor(np.asarray(edit_image))
processor = processor.to("cpu")
del processor
new_edit_image = Image.fromarray(new_edit_image)
return Image.composite(new_edit_image, edit_image, edit_mask)
class ACEPlusImageProcessor():
def __init__(self, max_aspect_ratio=4, d=16, max_seq_len=1024):
self.max_aspect_ratio = max_aspect_ratio
self.d = d
self.max_seq_len = max_seq_len
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def image_check(self, image):
if image is None:
return image
# preprocess
W, H = image.size
if H / W > self.max_aspect_ratio:
image = T.CenterCrop([int(self.max_aspect_ratio * W), W])(image)
elif W / H > self.max_aspect_ratio:
image = T.CenterCrop([H, int(self.max_aspect_ratio * H)])(image)
return self.transforms(image)
def preprocess(self,
reference_image=None,
edit_image=None,
edit_mask=None,
height=1024,
width=1024,
repainting_scale = 1.0,
keep_pixels = False,
keep_pixels_rate = 0.8,
use_change = False):
reference_image = self.image_check(reference_image)
edit_image = self.image_check(edit_image)
# for reference generation
if edit_image is None:
edit_image = torch.zeros([3, height, width])
edit_mask = torch.ones([1, height, width])
else:
if edit_mask is None:
_, eH, eW = edit_image.shape
edit_mask = np.ones((eH, eW))
else:
edit_mask = np.asarray(edit_mask)
edit_mask = np.where(edit_mask > 128, 1, 0)
edit_mask = edit_mask.astype(
np.float32) if np.any(edit_mask) else np.ones_like(edit_mask).astype(
np.float32)
edit_mask = torch.tensor(edit_mask).unsqueeze(0)
edit_image = edit_image * (1 - edit_mask * repainting_scale)
out_h, out_w = edit_image.shape[-2:]
assert edit_mask is not None
if reference_image is not None:
_, H, W = reference_image.shape
_, eH, eW = edit_image.shape
if not keep_pixels:
# align height with edit_image
scale = eH / H
tH, tW = eH, int(W * scale)
reference_image = T.Resize((tH, tW), interpolation=T.InterpolationMode.BILINEAR, antialias=True)(
reference_image)
else:
# padding
if H >= keep_pixels_rate * eH:
tH = int(eH * keep_pixels_rate)
scale = tH/H
tW = int(W * scale)
reference_image = T.Resize((tH, tW), interpolation=T.InterpolationMode.BILINEAR, antialias=True)(
reference_image)
rH, rW = reference_image.shape[-2:]
delta_w = 0
delta_h = eH - rH
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
reference_image = T.Pad(padding, fill=0, padding_mode="constant")(reference_image)
edit_image = torch.cat([reference_image, edit_image], dim=-1)
edit_mask = torch.cat([torch.zeros([1, reference_image.shape[1], reference_image.shape[2]]), edit_mask], dim=-1)
slice_w = reference_image.shape[-1]
else:
slice_w = 0
H, W = edit_image.shape[-2:]
scale = min(1.0, math.sqrt(self.max_seq_len * 2 / ((H / self.d) * (W / self.d))))
rH = int(H * scale) // self.d * self.d # ensure divisible by self.d
rW = int(W * scale) // self.d * self.d
slice_w = int(slice_w * scale) // self.d * self.d
edit_image = T.Resize((rH, rW), interpolation=T.InterpolationMode.NEAREST_EXACT, antialias=True)(edit_image)
edit_mask = T.Resize((rH, rW), interpolation=T.InterpolationMode.NEAREST_EXACT, antialias=True)(edit_mask)
content_image = edit_image
if use_change:
change_image = edit_image * edit_mask
edit_image = edit_image * (1 - edit_mask)
else:
change_image = None
return edit_image, edit_mask, change_image, content_image, out_h, out_w, slice_w
def postprocess(self, image, slice_w, out_w, out_h):
w, h = image.size
if slice_w > 0:
output_image = image.crop((slice_w + 30, 0, w, h))
output_image = output_image.resize((out_w, out_h))
else:
output_image = image
return output_image