Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import math | |
import torch | |
import torchvision.transforms as T | |
import numpy as np | |
from scepter.modules.annotator.registry import ANNOTATORS | |
from scepter.modules.utils.config import Config | |
from PIL import Image | |
def edit_preprocess(processor, device, edit_image, edit_mask): | |
if edit_image is None or processor is None: | |
return edit_image | |
processor = Config(cfg_dict=processor, load=False) | |
processor = ANNOTATORS.build(processor).to(device) | |
new_edit_image = processor(np.asarray(edit_image)) | |
processor = processor.to("cpu") | |
del processor | |
new_edit_image = Image.fromarray(new_edit_image) | |
return Image.composite(new_edit_image, edit_image, edit_mask) | |
class ACEPlusImageProcessor(): | |
def __init__(self, max_aspect_ratio=4, d=16, max_seq_len=1024): | |
self.max_aspect_ratio = max_aspect_ratio | |
self.d = d | |
self.max_seq_len = max_seq_len | |
self.transforms = T.Compose([ | |
T.ToTensor(), | |
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
def image_check(self, image): | |
if image is None: | |
return image | |
# preprocess | |
W, H = image.size | |
if H / W > self.max_aspect_ratio: | |
image = T.CenterCrop([int(self.max_aspect_ratio * W), W])(image) | |
elif W / H > self.max_aspect_ratio: | |
image = T.CenterCrop([H, int(self.max_aspect_ratio * H)])(image) | |
return self.transforms(image) | |
def preprocess(self, | |
reference_image=None, | |
edit_image=None, | |
edit_mask=None, | |
height=1024, | |
width=1024, | |
repainting_scale = 1.0, | |
keep_pixels = False, | |
keep_pixels_rate = 0.8, | |
use_change = False): | |
reference_image = self.image_check(reference_image) | |
edit_image = self.image_check(edit_image) | |
# for reference generation | |
if edit_image is None: | |
edit_image = torch.zeros([3, height, width]) | |
edit_mask = torch.ones([1, height, width]) | |
else: | |
if edit_mask is None: | |
_, eH, eW = edit_image.shape | |
edit_mask = np.ones((eH, eW)) | |
else: | |
edit_mask = np.asarray(edit_mask) | |
edit_mask = np.where(edit_mask > 128, 1, 0) | |
edit_mask = edit_mask.astype( | |
np.float32) if np.any(edit_mask) else np.ones_like(edit_mask).astype( | |
np.float32) | |
edit_mask = torch.tensor(edit_mask).unsqueeze(0) | |
edit_image = edit_image * (1 - edit_mask * repainting_scale) | |
out_h, out_w = edit_image.shape[-2:] | |
assert edit_mask is not None | |
if reference_image is not None: | |
_, H, W = reference_image.shape | |
_, eH, eW = edit_image.shape | |
if not keep_pixels: | |
# align height with edit_image | |
scale = eH / H | |
tH, tW = eH, int(W * scale) | |
reference_image = T.Resize((tH, tW), interpolation=T.InterpolationMode.BILINEAR, antialias=True)( | |
reference_image) | |
else: | |
# padding | |
if H >= keep_pixels_rate * eH: | |
tH = int(eH * keep_pixels_rate) | |
scale = tH/H | |
tW = int(W * scale) | |
reference_image = T.Resize((tH, tW), interpolation=T.InterpolationMode.BILINEAR, antialias=True)( | |
reference_image) | |
rH, rW = reference_image.shape[-2:] | |
delta_w = 0 | |
delta_h = eH - rH | |
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2)) | |
reference_image = T.Pad(padding, fill=0, padding_mode="constant")(reference_image) | |
edit_image = torch.cat([reference_image, edit_image], dim=-1) | |
edit_mask = torch.cat([torch.zeros([1, reference_image.shape[1], reference_image.shape[2]]), edit_mask], dim=-1) | |
slice_w = reference_image.shape[-1] | |
else: | |
slice_w = 0 | |
H, W = edit_image.shape[-2:] | |
scale = min(1.0, math.sqrt(self.max_seq_len * 2 / ((H / self.d) * (W / self.d)))) | |
rH = int(H * scale) // self.d * self.d # ensure divisible by self.d | |
rW = int(W * scale) // self.d * self.d | |
slice_w = int(slice_w * scale) // self.d * self.d | |
edit_image = T.Resize((rH, rW), interpolation=T.InterpolationMode.NEAREST_EXACT, antialias=True)(edit_image) | |
edit_mask = T.Resize((rH, rW), interpolation=T.InterpolationMode.NEAREST_EXACT, antialias=True)(edit_mask) | |
content_image = edit_image | |
if use_change: | |
change_image = edit_image * edit_mask | |
edit_image = edit_image * (1 - edit_mask) | |
else: | |
change_image = None | |
return edit_image, edit_mask, change_image, content_image, out_h, out_w, slice_w | |
def postprocess(self, image, slice_w, out_w, out_h): | |
w, h = image.size | |
if slice_w > 0: | |
output_image = image.crop((slice_w + 30, 0, w, h)) | |
output_image = output_image.resize((out_w, out_h)) | |
else: | |
output_image = image | |
return output_image |