Spaces:
Paused
Paused
import cv2 | |
import numpy as np | |
from PIL import Image | |
import os | |
import gradio as gr | |
from huggingface_hub import hf_hub_download, snapshot_download | |
def resolve_hf_path(path): | |
if isinstance(path, str) and path.startswith("hf://"): | |
parts = path[len("hf://"):].split("@") | |
if len(parts) == 1: | |
repo_id = parts[0] | |
filename = None | |
elif len(parts) == 2: | |
repo_id, filename = parts | |
else: | |
raise ValueError(f"Invalid HF URI format: {path}") | |
token = os.environ.get("HUGGINGFACE_HUB_TOKEN") | |
if token is None: | |
raise ValueError("HUGGINGFACE_HUB_TOKEN environment variable not set!") | |
# If filename is provided, download that file; otherwise, download the whole repo snapshot. | |
local_path = hf_hub_download(repo_id=repo_id, filename=filename, token=token) if filename else snapshot_download(repo_id=repo_id, token=token) | |
return local_path | |
return path | |
os.environ["FLUX_FILL_PATH"] = "hf://black-forest-labs/FLUX.1-Fill-dev" | |
os.environ["PORTRAIT_MODEL_PATH"] = "ms://iic/ACE_Plus@portrait/comfyui_portrait_lora64.safetensors" | |
os.environ["SUBJECT_MODEL_PATH"] = "ms://iic/ACE_Plus@subject/comfyui_subject_lora16.safetensors" | |
os.environ["LOCAL_MODEL_PATH"] = "ms://iic/ACE_Plus@local_editing/comfyui_local_lora16.safetensors" | |
os.environ["ACE_PLUS_FFT_MODEL"] = "hf://ali-vilab/ACE_Plus@ace_plus_fft.safetensors" | |
flux_full = resolve_hf_path(os.environ["FLUX_FILL_PATH"]) | |
ace_plus_fft_model_path = resolve_hf_path(os.environ["ACE_PLUS_FFT_MODEL"]) | |
# Update the environment variables with the resolved local file paths. | |
os.environ["ACE_PLUS_FFT_MODEL"] = ace_plus_fft_model_path | |
os.environ["FLUX_FILL_PATH"] = flux_full | |
from inference.ace_plus_inference import ACEInference | |
from scepter.modules.utils.config import Config | |
from modules.flux import FluxMRModiACEPlus | |
from inference.registry import INFERENCES | |
config_path = os.path.join("config", "ace_plus_fft.yaml") | |
cfg = Config(load=True, cfg_file=config_path) | |
# Instantiate the ACEInference object. | |
ace_infer = ACEInference(cfg) | |
def create_face_mask(pil_image): | |
""" | |
Create a binary mask (PIL Image) from a PIL image by detecting the face region. | |
The mask will be white (255) on the detected face area and black (0) elsewhere. | |
""" | |
try: | |
# Convert PIL image to a numpy array in RGB format | |
image_np = np.array(pil_image.convert("RGB")) | |
# Convert to grayscale for face detection | |
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
# Load the Haar cascade for face detection (make sure opencv data is installed) | |
cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_default.xml" | |
face_cascade = cv2.CascadeClassifier(cascade_path) | |
# Detect faces in the image | |
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) | |
# Create an empty mask with the same dimensions as the image | |
mask = np.zeros_like(gray, dtype=np.uint8) | |
# For each detected face, draw a white rectangle (or a more refined shape) | |
for (x, y, w, h) in faces: | |
# Optionally expand the bounding box slightly | |
padding = 0.2 | |
x1 = max(0, int(x - w * padding)) | |
y1 = max(0, int(y - h * padding)) | |
x2 = min(gray.shape[1], int(x + w * (1 + padding))) | |
y2 = min(gray.shape[0], int(y + h * (1 + padding))) | |
mask[y1:y2, x1:x2] = 255 | |
return Image.fromarray(mask) | |
except Exception as e: | |
print(f"Error: {e}") | |
raise ValueError('A very specific bad thing happened.') | |
def face_swap_app(target_img, face_img): | |
if target_img is None or face_img is None: | |
raise ValueError("Both a target image and a face image must be provided.") | |
# (Optional) Ensure images are in RGB | |
target_img = target_img.convert("RGB") | |
face_img = face_img.convert("RGB") | |
edit_mask = create_face_mask(face_img) | |
output_img, edit_image, change_image, mask, seed = ace_infer( | |
reference_image=target_img, | |
edit_image=face_img, | |
edit_mask=edit_mask, | |
prompt="Face swap", | |
output_height=1024, | |
output_width=1024, | |
sampler='flow_euler', | |
sample_steps=28, | |
guide_scale=50, | |
seed=-1 | |
) | |
return output_img | |
# Create the Gradio interface. | |
iface = gr.Interface( | |
fn=face_swap_app, | |
inputs=[ | |
gr.Image(type="pil", label="Target Image"), | |
gr.Image(type="pil", label="Face Image") | |
], | |
outputs=gr.Image(type="pil", label="Swapped Face Output"), | |
title="ACE++ Face Swap Demo", | |
description="Upload a target image and a face image to swap the face using the ACE++ model." | |
) | |
if __name__ == "__main__": | |
iface.launch() |