|
import gradio as gr |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.llms import HuggingFaceHub |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import RetrievalQA |
|
from langchain.document_loaders import PyMuPDFLoader |
|
|
|
def load_doc(pdf_doc): |
|
|
|
loader = PyMuPDFLoader(pdf_doc.name) |
|
documents = loader.load() |
|
embedding = HuggingFaceEmbeddings() |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
text = text_splitter.split_documents(documents) |
|
db = Chroma.from_documents(text, embedding) |
|
llm = HuggingFaceHub(repo_id="OpenAssistant/oasst-sft-1-pythia-12b", model_kwargs={"temperature": 1.0, "max_length": 256}) |
|
global chain |
|
chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=db.as_retriever()) |
|
return 'Document has successfully been loaded' |
|
|
|
def answer_query(query): |
|
question = query |
|
return chain.run(question) |
|
html = """ |
|
<div style="text-align:center; max width: 700px;"> |
|
<h1>ChatPDF</h1> |
|
<p> Upload a PDF File, then click on Load PDF File <br> |
|
Once the document has been loaded you can begin chatting with the PDF =) |
|
</div>""" |
|
css = """container{max-width:700px; margin-left:auto; margin-right:auto,padding:20px}""" |
|
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo: |
|
gr.HTML(html) |
|
with gr.Column(): |
|
gr.Markdown('ChatPDF') |
|
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf','.docx'],type='file') |
|
with gr.Row(): |
|
load_pdf = gr.Button('Load pdf file') |
|
status = gr.Textbox(label="Status",placeholder='',interactive=False) |
|
|
|
|
|
with gr.Row(): |
|
input = gr.Textbox(label="type in your question") |
|
output = gr.Textbox(label="output") |
|
submit_query = gr.Button("submit") |
|
|
|
load_pdf.click(load_doc,inputs=pdf_doc,outputs=status) |
|
|
|
submit_query.click(answer_query,input,output) |
|
|
|
demo.launch() |