Wootang01's picture
Update app.py
3faab96
raw
history blame
1.77 kB
import gradio as gr
models =["CompVis/stable-diffusion-v1-4", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2-1-base"]
title="Text to Image with Stable Diffusion 2.1 Base"
description="Input text, submit and the computer will create a picture."
examples=[
["Once upon a time, Dr. Woo was walking his dog in a park. His dog was a poodle."],
["Zoe Kwan is a 20-year old singer and songwriter who has taken Hong Kong’s music scene by storm."],
["Zoe’s big break came when the godfather of Cantopop Sam Hui stumbled upon a YouTube video of Zoe singing."]
]
gr.Interface.load("huggingface/stabilityai/stable-diffusion-2-1-base", title=title, description=description, examples=examples, live=False,preprocess=True, postprocess=False).launch()
#import diffusers
#import streamlit as st
#device = "cpu"
#from diffusers import StableDiffusionPipeline
#pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision = "fp16", use_auth_token = st.secrets["USER_TOKEN"])
#pipe = pipe.to("cpu")
#from PIL import Image
#import torch
#def StableDiffusionPipeline (prompt, Guide, iSteps, seed):
# generator = torch.Generator("cpu").manual_seed(seed)
# image = pipe(prompt, num_inference_steps = iSteps, guidence_scale = Guide).images[0]
# return image
#iface = gr.Interface(fn = StableDiffusionPipeline, inputs = [
# gr.Textbox(label = 'Prompt Input Text'),
# gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
# gr.Slider(10, 100, value = 25, step = 1, label = 'Number of Iterations'),
# gr.Slider(
# label = "Seed",
# minimum = 0,
# maximum = 2147483647,
# step = 1,
# randomize = True)
# ],
# outputs = 'image')
#iface.launch()