import gradio as gr import diffusers import streamlit as st device = "cpu" from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision = "fp16", use_auth_token = st.secrets["USER_TOKEN"]) pipe = pipe.to("cpu") from PIL import Image import torch def StableDiffusionPipeline (prompt, Guide, iSteps, seed): generator = torch.Generator("cpu").manual_seed(seed) image = pipe(prompt, num_inference_steps = iSteps, guidence_scale = Guide).images[0] return image iface = gr.Interface(fn = StableDiffusionPipeline, inputs = [ gr.Textbox(label = 'Prompt Input Text'), gr.Slider(2, 15, value = 7, label = 'Guidence Scale'), gr.Slider(10, 100, value = 25, step = 1, label = 'Number of Iterations'), gr.Slider( label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True) ], outputs = 'image') iface.launch()