File size: 7,220 Bytes
8712c90
31d9406
a5ec26c
 
 
 
 
5ac398b
a5ec26c
 
 
 
 
 
89cfd4d
 
a5ec26c
89cfd4d
a5ec26c
89cfd4d
5ac398b
89cfd4d
5ac398b
89cfd4d
5ac398b
89cfd4d
5ac398b
a5ec26c
 
 
 
321a1b2
 
1df4bb8
321a1b2
a5ec26c
321a1b2
 
 
 
 
 
 
 
32ab5e4
 
 
89cfd4d
a5ec26c
 
 
89cfd4d
 
 
a5ec26c
89cfd4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5ec26c
89cfd4d
f643580
89cfd4d
 
 
 
 
 
 
 
30ede40
383d1f8
89cfd4d
 
383d1f8
 
89cfd4d
9ec0501
89cfd4d
 
 
 
30ede40
383d1f8
89cfd4d
 
383d1f8
a5ec26c
 
943551c
a5ec26c
 
943551c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc664e5
f643580
 
89cfd4d
 
3bc7e87
1df4bb8
bc664e5
89cfd4d
a5ec26c
 
bc664e5
943551c
 
 
 
 
 
 
 
 
 
 
30ede40
1df4bb8
 
89cfd4d
 
 
 
 
1df4bb8
89cfd4d
 
 
 
44c881e
1df4bb8
32ab5e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30ede40
89cfd4d
bc664e5
 
a5ec26c
bc664e5
 
 
 
a5ec26c
 
bc664e5
 
 
 
a5ec26c
 
bc664e5
 
 
30ede40
1df4bb8
8712c90
44c881e
a5ec26c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import requests
import gradio as gr
from enum import Enum

class Model(Enum):
    GEMMA = "gemma-2-2b"
    GPT2 = "gpt2-small"

MODEL_CONFIGS = {
    Model.GEMMA: "20-gemmascope-res-16k",
    Model.GPT2: "9-res-jb"
}

def get_features(text: str, model: Model):
    url = "https://www.neuronpedia.org/api/search-with-topk"
    payload = {
        "modelId": model.value,
        "text": text,
        "layer": MODEL_CONFIGS[model]
    }
    try:
        response = requests.post(url, headers={"Content-Type": "application/json"}, json=payload)
        response.raise_for_status()
        return response.json()
    except Exception as e:
        return None

def create_dashboard(feature_id: int, model: Model) -> str:
    model_path = model.value.lower()
    layer_name = MODEL_CONFIGS[model].lower()
    
    return f"""
        <div class="dashboard-container p-4">
            <h3 class="text-lg font-semibold mb-4">Feature {feature_id} Dashboard</h3>
            <iframe
                src="https://www.neuronpedia.org/{model_path}/{layer_name}/{feature_id}?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300"
                width="100%"
                height="600"
                frameborder="0"
                class="rounded-lg"
            ></iframe>
        </div>
    """

def handle_feature_click(feature_id: int, model: str):
    selected_model = Model.GEMMA if model == "Gemini" else Model.GPT2
    return create_dashboard(feature_id, selected_model)

def analyze_text(text: str, selected_model: str):
    model = Model.GEMMA if selected_model == "Gemini" else Model.GPT2
    
    if not text:
        return [], ""
        
    features_data = get_features(text, model)
    if not features_data:
        return [], ""

    features = []
    first_feature_id = None
    
    for result in features_data['results']:
        if result['token'] == '<bos>':
            continue
            
        token = result['token']
        token_features = []
        
        for feature in result['top_features'][:3]:
            feature_id = feature['feature_index']
            if first_feature_id is None:
                first_feature_id = feature_id
                
            token_features.append({
                "token": token,
                "id": feature_id,
                "activation": feature['activation_value']
            })
        
        features.append({"token": token, "features": token_features})
    
    return features, create_dashboard(first_feature_id, model) if first_feature_id else ""

css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
body { font-family: 'Open Sans', sans-serif !important; }
.dashboard-container {
    border: 1px solid #e0e5ff;
    border-radius: 8px;
    background-color: #ffffff;
}
.token-header {
    font-size: 1.25rem;
    font-weight: 600;
    margin-top: 1rem;
    margin-bottom: 0.5rem;
}
.feature-button {
    display: inline-block;
    margin: 0.25rem;
    padding: 0.5rem 1rem;
    background-color: #f3f4f6;
    border: 1px solid #e5e7eb;
    border-radius: 0.375rem;
    font-size: 0.875rem;
}
.feature-button:hover {
    background-color: #e5e7eb;
}
.model-selector {
    display: flex;
    gap: 8px;
    margin-bottom: 1rem;
}
#model-buttons .gr-form {
    background: transparent !important;
    border: none !important;
    box-shadow: none !important;
}
#model-buttons .gr-radio-row {
    gap: 8px !important;
}
#model-buttons label {
    display: flex !important;
    align-items: center !important;
    gap: 4px !important;
    padding: 4px 12px !important;
    border: 1px solid #e5e7eb !important;
    border-radius: 6px !important;
    font-size: 14px !important;
    cursor: pointer !important;
    transition: all 0.2s !important;
}
#model-buttons label:hover {
    background-color: #f3f4f6 !important;
}
#model-buttons label.selected {
    background-color: #4c4ce3 !important;
    color: white !important;
    border-color: #4c4ce3 !important;
}
#model-buttons label:before {
    content: "" !important;
    width: 20px !important;
    height: 20px !important;
    background-size: contain !important;
    background-repeat: no-repeat !important;
    background-position: center !important;
}
#model-buttons label:nth-child(1):before {
    background-image: url('img/gemini-icon.png') !important;
}
#model-buttons label:nth-child(2):before {
    background-image: url('img/openai-icon.png') !important;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.Markdown("# Brand Analyzer", elem_classes="text-2xl font-bold mb-2")
    gr.Markdown("*Analyze text using interpretable neural features*", elem_classes="text-gray-600 mb-6")
    
    current_model = gr.State("Gemini")
    features_state = gr.State([])
    
    with gr.Row(elem_classes="model-selector"):
        with gr.Column(scale=1):
            with gr.Row():
                model_choice = gr.Radio(
                    choices=["Gemini", "OpenAI"],
                    value="Gemini",
                    label="",
                    elem_classes="model-selector",
                    elem_id="model-buttons",
                    container=False,
                    interactive=True
                )

    
    with gr.Row():
        with gr.Column(scale=1):
            input_text = gr.Textbox(
                lines=5,
                placeholder="Enter text to analyze...",
                label="Input Text"
            )
            analyze_btn = gr.Button("Analyze Features", variant="primary")
            gr.Examples(
                examples=["WordLift", "Think Different", "Just Do It"],
                inputs=input_text
            )
        
        with gr.Column(scale=2):
            @gr.render(inputs=[features_state, current_model])
            def render_features(features, model):
                if not features:
                    return
                
                for token_group in features:
                    gr.Markdown(f"### {token_group['token']}")
                    with gr.Row():
                        for feature in token_group['features']:
                            btn = gr.Button(
                                f"Feature {feature['id']} (Activation: {feature['activation']:.2f})",
                                elem_classes=["feature-button"]
                            )
                            btn.click(
                                fn=lambda fid=feature['id']: handle_feature_click(fid, model),
                                outputs=dashboard
                            )
            
            dashboard = gr.HTML()
    
    def update_and_analyze(text, model):
        return analyze_text(text, model)
    
    model_choice.change(
        fn=lambda x: x,
        inputs=[model_choice],
        outputs=[current_model]
    )
    
    analyze_btn.click(
        fn=update_and_analyze,
        inputs=[input_text, current_model],
        outputs=[features_state, dashboard]
    )
    
    input_text.submit(
        fn=update_and_analyze,
        inputs=[input_text, current_model],
        outputs=[features_state, dashboard]
    )

if __name__ == "__main__":
    demo.launch(share=False)