|
|
|
|
|
|
|
import os |
|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
|
|
model_dir = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
|
|
expansion = 1 |
|
num_layers = 2 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
def block_conv_info(self): |
|
block_kernel_sizes = [3, 3] |
|
block_strides = [self.stride, 1] |
|
block_paddings = [1, 1] |
|
|
|
return block_kernel_sizes, block_strides, block_paddings |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
expansion = 4 |
|
num_layers = 3 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = conv1x1(inplanes, planes) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = conv1x1(planes, planes * self.expansion) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
def block_conv_info(self): |
|
block_kernel_sizes = [1, 3, 1] |
|
block_strides = [1, self.stride, 1] |
|
block_paddings = [0, 1, 0] |
|
|
|
return block_kernel_sizes, block_strides, block_paddings |
|
|
|
|
|
class ResNet_features(nn.Module): |
|
""" |
|
the convolutional layers of ResNet |
|
the average pooling and final fully convolutional layer is removed |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False): |
|
super(ResNet_features, self).__init__() |
|
|
|
self.inplanes = 64 |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.kernel_sizes = [7, 3] |
|
self.strides = [2, 2] |
|
self.paddings = [3, 1] |
|
|
|
|
|
self.block = block |
|
self.layers = layers |
|
self.layer1 = self._make_layer( |
|
block=block, planes=64, num_blocks=self.layers[0] |
|
) |
|
self.layer2 = self._make_layer( |
|
block=block, planes=128, num_blocks=self.layers[1], stride=2 |
|
) |
|
self.layer3 = self._make_layer( |
|
block=block, planes=256, num_blocks=self.layers[2], stride=2 |
|
) |
|
self.layer4 = self._make_layer( |
|
block=block, planes=512, num_blocks=self.layers[3], stride=2 |
|
) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
|
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, num_blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
|
|
for each_block in layers: |
|
( |
|
block_kernel_sizes, |
|
block_strides, |
|
block_paddings, |
|
) = each_block.block_conv_info() |
|
self.kernel_sizes.extend(block_kernel_sizes) |
|
self.strides.extend(block_strides) |
|
self.paddings.extend(block_paddings) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
return x |
|
|
|
def conv_info(self): |
|
return self.kernel_sizes, self.strides, self.paddings |
|
|
|
def num_layers(self): |
|
""" |
|
the number of conv layers in the network, not counting the number |
|
of bypass layers |
|
""" |
|
|
|
return ( |
|
self.block.num_layers * self.layers[0] |
|
+ self.block.num_layers * self.layers[1] |
|
+ self.block.num_layers * self.layers[2] |
|
+ self.block.num_layers * self.layers[3] |
|
+ 1 |
|
) |
|
|
|
def __repr__(self): |
|
template = "resnet{}_features" |
|
return template.format(self.num_layers() + 1) |
|
|
|
|
|
def resnet50_features(pretrained=True, inat=True, **kwargs): |
|
"""Constructs a ResNet-50 model. |
|
Args: |
|
pretrained (bool): If True, returns a model pre-trained on ImageNet or iNaturalist |
|
pretrained (bool): If True, returns a model pre-trained on iNaturalst; else, ImageNet |
|
""" |
|
model = ResNet_features(Bottleneck, [3, 4, 6, 4], **kwargs) |
|
if pretrained: |
|
if inat: |
|
|
|
model_dict = torch.load( |
|
model_dir |
|
+ "/../../weights/" |
|
+ "BBN.iNaturalist2017.res50.90epoch.best_model.pth.pt" |
|
) |
|
else: |
|
raise |
|
|
|
if inat: |
|
model_dict.pop("module.classifier.weight") |
|
model_dict.pop("module.classifier.bias") |
|
for key in list(model_dict.keys()): |
|
model_dict[ |
|
key.replace("module.backbone.", "") |
|
.replace("cb_block", "layer4.2") |
|
.replace("rb_block", "layer4.3") |
|
] = model_dict.pop(key) |
|
|
|
else: |
|
raise |
|
|
|
model.load_state_dict(model_dict, strict=False) |
|
|
|
return model |
|
|
|
|
|
class ResNet_classifier(nn.Module): |
|
""" |
|
A classifier for Deformable ProtoPNet |
|
""" |
|
|
|
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False): |
|
super(ResNet_classifier, self).__init__() |
|
|
|
self.inplanes = 64 |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
self.kernel_sizes = [7, 3] |
|
self.strides = [2, 2] |
|
self.paddings = [3, 1] |
|
|
|
|
|
self.block = block |
|
self.layers = layers |
|
self.layer1 = self._make_layer( |
|
block=block, planes=64, num_blocks=self.layers[0] |
|
) |
|
self.layer2 = self._make_layer( |
|
block=block, planes=128, num_blocks=self.layers[1], stride=2 |
|
) |
|
self.layer3 = self._make_layer( |
|
block=block, planes=256, num_blocks=self.layers[2], stride=2 |
|
) |
|
self.layer4 = self._make_layer( |
|
block=block, planes=512, num_blocks=self.layers[3], stride=2 |
|
) |
|
|
|
self.classifier = nn.Linear(2048 * 7 * 7, 200) |
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
|
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
|
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, num_blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
|
|
for each_block in layers: |
|
( |
|
block_kernel_sizes, |
|
block_strides, |
|
block_paddings, |
|
) = each_block.block_conv_info() |
|
self.kernel_sizes.extend(block_kernel_sizes) |
|
self.strides.extend(block_strides) |
|
self.paddings.extend(block_paddings) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.classifier(torch.flatten(x, start_dim=1)) |
|
return x |
|
|
|
def conv_info(self): |
|
return self.kernel_sizes, self.strides, self.paddings |
|
|
|
def num_layers(self): |
|
""" |
|
the number of conv layers in the network, not counting the number |
|
of bypass layers |
|
""" |
|
|
|
return ( |
|
self.block.num_layers * self.layers[0] |
|
+ self.block.num_layers * self.layers[1] |
|
+ self.block.num_layers * self.layers[2] |
|
+ self.block.num_layers * self.layers[3] |
|
+ 1 |
|
) |
|
|
|
def __repr__(self): |
|
template = "resnet{}_features" |
|
return template.format(self.num_layers() + 1) |
|
|