Spaces:
Runtime error
Runtime error
File size: 10,036 Bytes
0e023c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
## Data preparation
### data for training
- The images pretraining dataset is from [LLaVA](https://github.com/haotian-liu/LLaVA).
- The images tuning dataset is from [LLaVA](https://github.com/haotian-liu/LLaVA).
- The videos pretraining dataset is from [Valley](https://github.com/RupertLuo/Valley).
- The videos tuning dataset is from [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT).
- Download the training annotations. You can download from [Baidu Disk](https://pan.baidu.com/s/1BipI3_f--GRWqaWTGYp-Jg?pwd=wkl0), [Google Disk](https://drive.google.com/file/d/11-1NBXNeiNQE2wPbue1dFph_Na_EHRYG/view?usp=drive_link) or [Peking University Disk](https://disk.pku.edu.cn:443/link/84783AB54553DFA150C1C5E82C16EB29)
We also provide the processed data as follows.
<div align="center">
<table border="1" width="100%">
<tr align="center">
<th>Datasets</th><th>Baidu Disk</th>
</tr>
<tr align="center">
<td>Image pretraining</td><td><a href="">Link</a></td>
</tr>
</tr>
<tr align="center">
<td>Image tuning</td><td><a href="">Link</a></td>
</tr>
</tr>
<tr align="center">
<td>Video pretraining</td><td><a href="">Link</a></td>
</tr>
</tr>
<tr align="center">
<td>Video tuning</td><td><a href="">Link</a></td>
</tr>
</table>
</div>
After downloading all of them, organize the data as follows in ```DATA_ROOT```.
```Shell
DATA_ROOT
βββ llava_image
βββ llava_image_tune
βββ valley
βββ videochatgpt_tune
```
### data for validating
- For image, follow LLaVA's instructions. ***You MUST first download [eval.zip](https://drive.google.com/file/d/1atZSBBrAX54yYpxtVVW33zFvcnaHeFPy/view?usp=sharing)**. It contains custom annotations, scripts, and the prediction files with LLaVA v1.5. Extract to `eval`. This also provides a general structure for all datasets.*
- For video, videos and annotations can be downloaded from Video-ChatGPT. We also provide the processed data as follows.
<div align="center">
<table border="1" width="100%">
<tr align="center">
<th>Datasets</th><th>Baidu Disk</th><th>Google Disk</th><th>Peking University Disk</th>
</tr>
<tr align="center">
<td>Activitynet_Zero_Shot_QA</td><td><a href="https://pan.baidu.com/s/1d_AVx9Mz_57nA3exhQZGyA?pwd=9amr ">Link</a></td><td>-</td><td>-</td>
</tr>
</tr>
<tr align="center">
<td>MSRVTT_Zero_Shot_QA</td><td><a href="https://pan.baidu.com/s/1QHUtwHXm4Vc-Wc12XFCFsA?pwd=1rj8">Link</a></td><td><a href="https://drive.google.com/file/d/1yXh9lz7flQ5Ui2IRSd6Qi6RqSEeUJwl3/view?usp=drive_link">Link</a></td><td>-</td>
</tr>
</tr>
<tr align="center">
<td>MSVD_Zero_Shot_QA</td><td><a href="https://pan.baidu.com/s/1PJSHkjHG2BPl_ddUnBj9AA?pwd=jj34">Link</a></td><td><a href="https://drive.google.com/file/d/1_q4eiSdb7i8P3Hmh4lCfgY1uBGyzU_7X/view?usp=drive_link">Link</a></td><td><a href="https://disk.pku.edu.cn:443/link/8B0D01747D8AA65534820B7E60CBFEFC">Link</a></td>
</tr>
</tr>
<tr align="center">
<td>TGIF_Zero_Shot_QA</td><td><a href="https://pan.baidu.com/s/11ubtWbTtubyBmN9UPvAyow?pwd=98yr">Link</a></td><td><a href="https://drive.google.com/file/d/1so6L9rg_gdC8Segur7rKML-ffd4Ix_I6/view?usp=drive_link">Link</a></td><td><a href="https://disk.pku.edu.cn:443/link/B9AB387EFE8817158F181FF3D7A97163">Link</a></td>
</tr>
</table>
</div>
After downloading all of them, organize the data as follows in `eval`.
```Shell
eval
βββ GPT_Zero_Shot_QA
βΒ Β βββ Activitynet_Zero_Shot_QA
βΒ Β βββ MSRVTT_Zero_Shot_QA
βΒ Β βββ MSVD_Zero_Shot_QA
βΒ Β βββ TGIF_Zero_Shot_QA
βββ gqa
βΒ Β βββ answers
βΒ Β βββ data
βΒ Β βββ llava_gqa_testdev_balanced.jsonl
βββ llava-bench-in-the-wild
βΒ Β βββ answers
βΒ Β βββ answers_gpt4.jsonl
βΒ Β βββ bard_0718.jsonl
βΒ Β βββ bing_chat_0629.jsonl
βΒ Β βββ context.jsonl
βΒ Β βββ images
βΒ Β βββ questions.jsonl
βΒ Β βββ README.md
βΒ Β βββ reviews
βββ mmbench
βΒ Β βββ answers
βΒ Β βββ answers_upload
βΒ Β βββ mmbench_dev_20230712.tsv
βΒ Β βββ mmbench_dev_en_20231003.tsv
βββ MME
βΒ Β βββ answers
βΒ Β βββ convert_answer_to_mme.py
βΒ Β βββ llava_mme.jsonl
βββ mm-vet
βΒ Β βββ answers
βΒ Β βββ bard_set.json
βΒ Β βββ convert_answers.py
βΒ Β βββ images
βΒ Β βββ llava-mm-vet.jsonl
βΒ Β βββ mm-vet.json
βΒ Β βββ results
βββ pope
βΒ Β βββ answers
βΒ Β βββ coco
βΒ Β βββ llava_pope_test.jsonl
βΒ Β βββ val2014
βββ scienceqa
βΒ Β βββ answers
βΒ Β βββ images
βΒ Β βββ llava_test_CQM-A.json
βΒ Β βββ pid_splits.json
βΒ Β βββ problems.json
βββ seed_bench
βΒ Β βββ answers
βΒ Β βββ answers_upload
βΒ Β βββ extract_video_frames.py
βΒ Β βββ llava-seed-bench.jsonl
βββ textvqa
βΒ Β βββ answers
βΒ Β βββ llava_textvqa_val_v051_ocr.jsonl
βΒ Β βββ TextVQA_0.5.1_val.json
βΒ Β βββ train_images
βββ vizwiz
βΒ Β βββ answers
βΒ Β βββ answers_upload
βΒ Β βββ llava_test.jsonl
βΒ Β βββ test
βΒ Β βββ test.json
βΒ Β βββ train.json
βΒ Β βββ val.json
βββ vqav2
βββ answers
βββ answers_upload
βββ llava_vqav2_mscoco_test2015.jsonl
βββ llava_vqav2_mscoco_test-dev2015.jsonl
βββ test2015
```
## Training
Specify your `DATA_ROOT` according to the data preparation.
- Stage 1 pretraining script: [pretrain.sh](scripts/v1_5/pretrain.sh).
- Stage 2 tuning script: [finetune.sh](scripts/v1_5/finetune.sh).
## Validating
Our image validation code comes from LLaVA and our video validation code comes from Video-ChatGPT, thanks for their contribution!
You can refer to the official repository for validation, but we also provide [off-the-shelf](scripts/v1_5/eval) scripts.
### MSRVTT-QA
1. Inference to get the result.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/run_qa_msrvtt.sh
```
2. GPT-Assistant evaluation.
```Shell
bash scripts/v1_5/eval/eval_qa_msrvtt.sh
```
### MSVD-QA
1. Inference to get the result.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/run_qa_msvd.sh
```
2. GPT-Assistant evaluation.
```Shell
bash scripts/v1_5/eval/eval_qa_msvd.sh
```
### TGIF-QA
1. Inference to get the result.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/run_qa_tgif.sh
```
2. GPT-Assistant evaluation.
```Shell
bash scripts/v1_5/eval/eval_qa_tgif.sh
```
### ActivityNet-QA
1. Inference to get the result.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/run_qa_activitynet.sh
```
2. GPT-Assistant evaluation.
```Shell
bash scripts/v1_5/eval/eval_qa_activitynet.sh
```
### VQAv2
1. Download [`test2015`](http://images.cocodataset.org/zips/test2015.zip) and put it under `eval/vqav2`.
2. Multi-GPU inference.
```Shell
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/eval_image_vqav2.sh
```
3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/830/my-submission): `eval/vqav2/answers_upload`.
### GQA
1. Download the data following the official instructions [here](https://cs.stanford.edu/people/dorarad/gqa/download.html) and put under `eval/gqa/data`.
2. Multi-GPU inference.
```Shell
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash scripts/v1_5/eval/eval_image_gqa.sh
```
### VisWiz
1. Download [`test.json`](https://vizwiz.cs.colorado.edu/VizWiz_final/vqa_data/Annotations.zip) and extract [`test.zip`](https://vizwiz.cs.colorado.edu/VizWiz_final/images/test.zip) to `test`. Put them under `eval/vizwiz`.
2. Single-GPU inference.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_vizwiz.sh
```
3. Submit the results to the [evaluation server](https://eval.ai/web/challenges/challenge-page/1911/my-submission): `eval/vizwiz/answers_upload`.
### ScienceQA
1. Under `eval/scienceqa`, download `images`, `pid_splits.json`, `problems.json` from the `data/scienceqa` folder of the ScienceQA [repo](https://github.com/lupantech/ScienceQA).
2. Single-GPU inference and evaluate.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_sqa.sh
```
### TextVQA
1. Download [`TextVQA_0.5.1_val.json`](https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json) and [images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip) and extract to `eval/textvqa`.
2. Single-GPU inference and evaluate.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_textvqa.sh
```
### POPE
1. Download `coco` from [POPE](https://github.com/AoiDragon/POPE/tree/e3e39262c85a6a83f26cf5094022a782cb0df58d/output/coco) and put under `eval/pope`.
2. Single-GPU inference and evaluate.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_pope.sh
```
### MMBench
1. Download [`mmbench_dev_20230712.tsv`](https://download.openmmlab.com/mmclassification/datasets/mmbench/mmbench_dev_20230712.tsv) and put under `eval/mmbench`.
2. Single-GPU inference.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_mmbench.sh
```
3. Submit the results to the [evaluation server](https://opencompass.org.cn/leaderboard-multimodal): `eval/mmbench/answers_upload/mmbench_dev_20230712`.
### LLaVA-Bench-in-the-Wild
1. Extract contents of [`llava-bench-in-the-wild`](https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild) to `eval/llava-bench-in-the-wild`.
2. Single-GPU inference and evaluate.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_llavabench.sh
```
### MM-Vet
1. Extract [`mm-vet.zip`](https://github.com/yuweihao/MM-Vet/releases/download/v1/mm-vet.zip) to `eval/mmvet`.
2. Single-GPU inference.
```Shell
CUDA_VISIBLE_DEVICES=0 bash scripts/v1_5/eval/eval_image_mmvet.sh
```
|