meme_world / app.py
Xhaheen's picture
Update app.py
4fe1f45
# # %%bash
# # # git lfs install
# # # git clone https://huggingface.co/spaces/Xhaheen/meme_world
# # # pip install -r /content/meme_world/requirements.txt
# # # pip install gradio
# # cd /meme_world
# import torch
# import re
# import gradio as gr
# from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
# import cohere
# import os
# #
# # os.environ['key_srkian'] = ''
# key_srkian = os.environ["key_srkian"]
# co = cohere.Client(key_srkian)#srkian
# device='cpu'
# encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
# decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
# model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
# feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
# tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
# model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
# def predict(department,image,max_length=64, num_beams=4):
# image = image.convert('RGB')
# image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
# clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
# caption_ids = model.generate(image, max_length = max_length)[0]
# caption_text = clean_text(tokenizer.decode(caption_ids))
# dept=department
# context= caption_text
# response = co.generate(
# model='large',
# prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-',
# max_tokens=20,
# temperature=0.8,
# k=0,
# p=0.75,
# frequency_penalty=0,
# presence_penalty=0,
# stop_sequences=["department"],
# return_likelihoods='NONE')
# reponse=response.generations[0].text
# reponse = reponse.replace("department", "")
# Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse
# return reponse
# # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
# output = gr.outputs.Textbox(type="text",label="Meme")
# #examples = [f"example{i}.jpg" for i in range(1,7)]
# #examples = os.listdir()
# examples = [f"example{i}.png" for i in range(1,7)]
# #examples=os.listdir()
# #for fichier in examples:
# # if not(fichier.endswith(".png")):
# # examples.remove(fichier)
# description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)"
# title = "Meme world 🖼️"
# dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]
# article = "Created By : Xaheen "
# interface = gr.Interface(
# fn=predict,
# inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)],
# theme="grass",
# outputs=output,
# examples =[['data science', 'example5.png'],
# ['product management', 'example2.png'],
# ['startup', 'example3.png'],
# ['marketing', 'example4.png'],
# ['agile', 'example1.png'],
# ['crypto', 'example6.png']],
# title=title,
# description=description,
# article = article,
# )
# interface.launch(debug=True)
# Step 2: Set up the Gradio interface and import necessary packages
import gradio as gr
import openai
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
import os
# Step 3: Load the provided image captioning model
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Step 4: Create a function to generate captions from images
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def generate_caption(image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
if image.mode != "RGB":
image = image.convert(mode="RGB")
pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
return caption
# Step 5: Create a function to generate memes using the GPT-3 API
def generate_meme(caption, department):
openai.api_key = os.environ["key"]
prompt = f"Create a non-offensive meme caption for the following image description in the context of {department} department: {caption}"
response = openai.Completion.create(engine="text-davinci-002", prompt=prompt, max_tokens=50, n=1, stop=None, temperature=0.7)
meme_caption = response.choices[0].text.strip()
return meme_caption
# Step 6: Define the main meme generation function
def meme_generator(image, department):
caption = generate_caption(image)
meme_caption = generate_meme(caption, department)
return meme_caption
examples = [f"example{i}.png" for i in range(1,7)]
# Step 7: Launch the Gradio application
image_input = gr.inputs.Image()
department_input = gr.inputs.Dropdown(choices=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ])
output_text = gr.outputs.Textbox()
gr.Interface(fn=meme_generator, inputs=[image_input, department_input], outputs=output_text, title="Meme world!",description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)", theme="gradio/seafoam",
examples =[['example5.png','data science' ],
['example2.png','product management'],
['example3.png','startup'],
['example4.png','marketing'],
['example1.png','agile'],
['example6.png','crypto']]).launch(debug=True)