Spaces:
Runtime error
Runtime error
# # %%bash | |
# # # git lfs install | |
# # # git clone https://huggingface.co/spaces/Xhaheen/meme_world | |
# # # pip install -r /content/meme_world/requirements.txt | |
# # # pip install gradio | |
# # cd /meme_world | |
# import torch | |
# import re | |
# import gradio as gr | |
# from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
# import cohere | |
# import os | |
# # | |
# # os.environ['key_srkian'] = '' | |
# key_srkian = os.environ["key_srkian"] | |
# co = cohere.Client(key_srkian)#srkian | |
# device='cpu' | |
# encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
# decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
# model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
# feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
# tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
# model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
# def predict(department,image,max_length=64, num_beams=4): | |
# image = image.convert('RGB') | |
# image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
# clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
# caption_ids = model.generate(image, max_length = max_length)[0] | |
# caption_text = clean_text(tokenizer.decode(caption_ids)) | |
# dept=department | |
# context= caption_text | |
# response = co.generate( | |
# model='large', | |
# prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', | |
# max_tokens=20, | |
# temperature=0.8, | |
# k=0, | |
# p=0.75, | |
# frequency_penalty=0, | |
# presence_penalty=0, | |
# stop_sequences=["department"], | |
# return_likelihoods='NONE') | |
# reponse=response.generations[0].text | |
# reponse = reponse.replace("department", "") | |
# Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse | |
# return reponse | |
# # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) | |
# output = gr.outputs.Textbox(type="text",label="Meme") | |
# #examples = [f"example{i}.jpg" for i in range(1,7)] | |
# #examples = os.listdir() | |
# examples = [f"example{i}.png" for i in range(1,7)] | |
# #examples=os.listdir() | |
# #for fichier in examples: | |
# # if not(fichier.endswith(".png")): | |
# # examples.remove(fichier) | |
# description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)" | |
# title = "Meme world 🖼️" | |
# dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] | |
# article = "Created By : Xaheen " | |
# interface = gr.Interface( | |
# fn=predict, | |
# inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], | |
# theme="grass", | |
# outputs=output, | |
# examples =[['data science', 'example5.png'], | |
# ['product management', 'example2.png'], | |
# ['startup', 'example3.png'], | |
# ['marketing', 'example4.png'], | |
# ['agile', 'example1.png'], | |
# ['crypto', 'example6.png']], | |
# title=title, | |
# description=description, | |
# article = article, | |
# ) | |
# interface.launch(debug=True) | |
# Step 2: Set up the Gradio interface and import necessary packages | |
import gradio as gr | |
import openai | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import os | |
# Step 3: Load the provided image captioning model | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Step 4: Create a function to generate captions from images | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def generate_caption(image): | |
image = Image.fromarray(image.astype('uint8'), 'RGB') | |
if image.mode != "RGB": | |
image = image.convert(mode="RGB") | |
pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() | |
return caption | |
# Step 5: Create a function to generate memes using the GPT-3 API | |
def generate_meme(caption, department): | |
openai.api_key = os.environ["key"] | |
prompt = f"Create a non-offensive meme caption for the following image description in the context of {department} department: {caption}" | |
response = openai.Completion.create(engine="text-davinci-002", prompt=prompt, max_tokens=50, n=1, stop=None, temperature=0.7) | |
meme_caption = response.choices[0].text.strip() | |
return meme_caption | |
# Step 6: Define the main meme generation function | |
def meme_generator(image, department): | |
caption = generate_caption(image) | |
meme_caption = generate_meme(caption, department) | |
return meme_caption | |
examples = [f"example{i}.png" for i in range(1,7)] | |
# Step 7: Launch the Gradio application | |
image_input = gr.inputs.Image() | |
department_input = gr.inputs.Dropdown(choices=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]) | |
output_text = gr.outputs.Textbox() | |
gr.Interface(fn=meme_generator, inputs=[image_input, department_input], outputs=output_text, title="Meme world!",description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)", theme="gradio/seafoam", | |
examples =[['example5.png','data science' ], | |
['example2.png','product management'], | |
['example3.png','startup'], | |
['example4.png','marketing'], | |
['example1.png','agile'], | |
['example6.png','crypto']]).launch(debug=True) | |