Xhaheen commited on
Commit
38a0b0b
·
1 Parent(s): e3d6a07

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -77
app.py CHANGED
@@ -1,95 +1,176 @@
1
- # %%bash
2
 
3
- # # git lfs install
4
- # # git clone https://huggingface.co/spaces/Xhaheen/meme_world
5
 
6
 
7
- # # pip install -r /content/meme_world/requirements.txt
8
- # # pip install gradio
9
- # cd /meme_world
10
 
11
 
12
- import torch
13
- import re
14
- import gradio as gr
15
- from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
16
- import cohere
17
- import os
18
- #
19
- # os.environ['key_srkian'] = ''
20
- key_srkian = os.environ["key_srkian"]
21
- co = cohere.Client(key_srkian)#srkian
22
- device='cpu'
23
- encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
24
- decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
25
- model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
26
- feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
27
- tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
28
- model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
29
-
30
-
31
- def predict(department,image,max_length=64, num_beams=4):
32
- image = image.convert('RGB')
33
- image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
34
- clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
35
- caption_ids = model.generate(image, max_length = max_length)[0]
36
- caption_text = clean_text(tokenizer.decode(caption_ids))
37
- dept=department
38
- context= caption_text
39
- response = co.generate(
40
- model='large',
41
- prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-',
42
- max_tokens=20,
43
- temperature=0.8,
44
- k=0,
45
- p=0.75,
46
- frequency_penalty=0,
47
- presence_penalty=0,
48
- stop_sequences=["department"],
49
- return_likelihoods='NONE')
50
- reponse=response.generations[0].text
51
- reponse = reponse.replace("department", "")
52
- Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse
53
 
54
 
55
- return reponse
56
 
57
 
58
 
59
- # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
60
 
61
 
62
 
63
- output = gr.outputs.Textbox(type="text",label="Meme")
64
- #examples = [f"example{i}.jpg" for i in range(1,7)]
65
- #examples = os.listdir()
66
- examples = [f"example{i}.png" for i in range(1,7)]
67
 
68
- #examples=os.listdir()
69
- #for fichier in examples:
70
- # if not(fichier.endswith(".png")):
71
- # examples.remove(fichier)
72
 
73
- description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)"
74
- title = "Meme world 🖼️"
75
- dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]
76
 
77
- article = "Created By : Xaheen "
78
 
79
- interface = gr.Interface(
80
- fn=predict,
81
- inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)],
82
 
83
- theme="grass",
84
- outputs=output,
85
- examples =[['data science', 'example5.png'],
86
- ['product management', 'example2.png'],
87
- ['startup', 'example3.png'],
88
- ['marketing', 'example4.png'],
89
- ['agile', 'example1.png'],
90
- ['crypto', 'example6.png']],
91
- title=title,
92
- description=description,
93
- article = article,
94
- )
95
- interface.launch(debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # %%bash
2
 
3
+ # # # git lfs install
4
+ # # # git clone https://huggingface.co/spaces/Xhaheen/meme_world
5
 
6
 
7
+ # # # pip install -r /content/meme_world/requirements.txt
8
+ # # # pip install gradio
9
+ # # cd /meme_world
10
 
11
 
12
+ # import torch
13
+ # import re
14
+ # import gradio as gr
15
+ # from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
16
+ # import cohere
17
+ # import os
18
+ # #
19
+ # # os.environ['key_srkian'] = ''
20
+ # key_srkian = os.environ["key_srkian"]
21
+ # co = cohere.Client(key_srkian)#srkian
22
+ # device='cpu'
23
+ # encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
24
+ # decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
25
+ # model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
26
+ # feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
27
+ # tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
28
+ # model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
29
+
30
+
31
+ # def predict(department,image,max_length=64, num_beams=4):
32
+ # image = image.convert('RGB')
33
+ # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
34
+ # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
35
+ # caption_ids = model.generate(image, max_length = max_length)[0]
36
+ # caption_text = clean_text(tokenizer.decode(caption_ids))
37
+ # dept=department
38
+ # context= caption_text
39
+ # response = co.generate(
40
+ # model='large',
41
+ # prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-',
42
+ # max_tokens=20,
43
+ # temperature=0.8,
44
+ # k=0,
45
+ # p=0.75,
46
+ # frequency_penalty=0,
47
+ # presence_penalty=0,
48
+ # stop_sequences=["department"],
49
+ # return_likelihoods='NONE')
50
+ # reponse=response.generations[0].text
51
+ # reponse = reponse.replace("department", "")
52
+ # Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse
53
 
54
 
55
+ # return reponse
56
 
57
 
58
 
59
+ # # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
60
 
61
 
62
 
63
+ # output = gr.outputs.Textbox(type="text",label="Meme")
64
+ # #examples = [f"example{i}.jpg" for i in range(1,7)]
65
+ # #examples = os.listdir()
66
+ # examples = [f"example{i}.png" for i in range(1,7)]
67
 
68
+ # #examples=os.listdir()
69
+ # #for fichier in examples:
70
+ # # if not(fichier.endswith(".png")):
71
+ # # examples.remove(fichier)
72
 
73
+ # description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)"
74
+ # title = "Meme world 🖼️"
75
+ # dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]
76
 
77
+ # article = "Created By : Xaheen "
78
 
79
+ # interface = gr.Interface(
80
+ # fn=predict,
81
+ # inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)],
82
 
83
+ # theme="grass",
84
+ # outputs=output,
85
+ # examples =[['data science', 'example5.png'],
86
+ # ['product management', 'example2.png'],
87
+ # ['startup', 'example3.png'],
88
+ # ['marketing', 'example4.png'],
89
+ # ['agile', 'example1.png'],
90
+ # ['crypto', 'example6.png']],
91
+ # title=title,
92
+ # description=description,
93
+ # article = article,
94
+ # )
95
+ # interface.launch(debug=True)
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+ # Step 2: Set up the Gradio interface and import necessary packages
108
+ import gradio as gr
109
+ import openai
110
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
111
+ import torch
112
+ from PIL import Image
113
+
114
+ # Step 3: Load the provided image captioning model
115
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
116
+ feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
117
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
118
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
119
+ model.to(device)
120
+
121
+ # Step 4: Create a function to generate captions from images
122
+ max_length = 16
123
+ num_beams = 4
124
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
125
+
126
+ def generate_caption(image):
127
+ image = Image.fromarray(image.astype('uint8'), 'RGB')
128
+ if image.mode != "RGB":
129
+ image = image.convert(mode="RGB")
130
+ pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values
131
+ pixel_values = pixel_values.to(device)
132
+ output_ids = model.generate(pixel_values, **gen_kwargs)
133
+ caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
134
+ return caption
135
+
136
+
137
+ # Step 5: Create a function to generate memes using the GPT-3 API
138
+ def generate_meme(caption, department):
139
+ openai.api_key = os.environ["key"]
140
+ prompt = f"Create a non-offensive meme caption for the following image description in the context of {department} department: {caption}"
141
+ response = openai.Completion.create(engine="text-davinci-002", prompt=prompt, max_tokens=50, n=1, stop=None, temperature=0.7)
142
+ meme_caption = response.choices[0].text.strip()
143
+ return meme_caption
144
+
145
+ # Step 6: Define the main meme generation function
146
+ def meme_generator(image, department):
147
+ caption = generate_caption(image)
148
+ meme_caption = generate_meme(caption, department)
149
+ return meme_caption
150
+
151
+ examples = [f"example{i}.png" for i in range(1,7)]
152
+
153
+ # Step 7: Launch the Gradio application
154
+ image_input = gr.inputs.Image()
155
+ department_input = gr.inputs.Dropdown(choices=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ])
156
+ output_text = gr.outputs.Textbox()
157
+
158
+ gr.Interface(fn=meme_generator, inputs=[image_input, department_input], outputs=output_text, title="Meme world!",description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)", theme="grass",
159
+
160
+ examples =[['example5.png','data science' ],
161
+ ['example2.png','product management'],
162
+ ['example3.png','startup'],
163
+ ['example4.png','marketing'],
164
+ ['example1.png','agile'],
165
+ ['example6.png','crypto']]).launch(debug=True)
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+