# # %%bash # # # git lfs install # # # git clone https://huggingface.co/spaces/Xhaheen/meme_world # # # pip install -r /content/meme_world/requirements.txt # # # pip install gradio # # cd /meme_world # import torch # import re # import gradio as gr # from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel # import cohere # import os # # # # os.environ['key_srkian'] = '' # key_srkian = os.environ["key_srkian"] # co = cohere.Client(key_srkian)#srkian # device='cpu' # encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" # decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" # model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" # feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) # tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) # model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) # def predict(department,image,max_length=64, num_beams=4): # image = image.convert('RGB') # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] # caption_ids = model.generate(image, max_length = max_length)[0] # caption_text = clean_text(tokenizer.decode(caption_ids)) # dept=department # context= caption_text # response = co.generate( # model='large', # prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', # max_tokens=20, # temperature=0.8, # k=0, # p=0.75, # frequency_penalty=0, # presence_penalty=0, # stop_sequences=["department"], # return_likelihoods='NONE') # reponse=response.generations[0].text # reponse = reponse.replace("department", "") # Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse # return reponse # # input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) # output = gr.outputs.Textbox(type="text",label="Meme") # #examples = [f"example{i}.jpg" for i in range(1,7)] # #examples = os.listdir() # examples = [f"example{i}.png" for i in range(1,7)] # #examples=os.listdir() # #for fichier in examples: # # if not(fichier.endswith(".png")): # # examples.remove(fichier) # description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)" # title = "Meme world 🖼️" # dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] # article = "Created By : Xaheen " # interface = gr.Interface( # fn=predict, # inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], # theme="grass", # outputs=output, # examples =[['data science', 'example5.png'], # ['product management', 'example2.png'], # ['startup', 'example3.png'], # ['marketing', 'example4.png'], # ['agile', 'example1.png'], # ['crypto', 'example6.png']], # title=title, # description=description, # article = article, # ) # interface.launch(debug=True) # Step 2: Set up the Gradio interface and import necessary packages import gradio as gr import openai from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image # Step 3: Load the provided image captioning model model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Step 4: Create a function to generate captions from images max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def generate_caption(image): image = Image.fromarray(image.astype('uint8'), 'RGB') if image.mode != "RGB": image = image.convert(mode="RGB") pixel_values = feature_extractor(images=[image], return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) caption = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip() return caption # Step 5: Create a function to generate memes using the GPT-3 API def generate_meme(caption, department): openai.api_key = os.environ["key"] prompt = f"Create a non-offensive meme caption for the following image description in the context of {department} department: {caption}" response = openai.Completion.create(engine="text-davinci-002", prompt=prompt, max_tokens=50, n=1, stop=None, temperature=0.7) meme_caption = response.choices[0].text.strip() return meme_caption # Step 6: Define the main meme generation function def meme_generator(image, department): caption = generate_caption(image) meme_caption = generate_meme(caption, department) return meme_caption examples = [f"example{i}.png" for i in range(1,7)] # Step 7: Launch the Gradio application image_input = gr.inputs.Image() department_input = gr.inputs.Dropdown(choices=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]) output_text = gr.outputs.Textbox() gr.Interface(fn=meme_generator, inputs=[image_input, department_input], outputs=output_text, title="Meme world!",description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)", theme="grass", examples =[['example5.png','data science' ], ['example2.png','product management'], ['example3.png','startup'], ['example4.png','marketing'], ['example1.png','agile'], ['example6.png','crypto']]).launch(debug=True)