Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import cv2 | |
import gradio as gr | |
import torch | |
from realesrgan_utils import RealESRGANer | |
from srvgg_arch import SRVGGNetCompact | |
os.system("pip freeze") | |
os.system( | |
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights") | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P ./weights") | |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P ./weights") | |
torch.hub.download_url_to_file( | |
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', | |
'lincoln.jpg') | |
torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', | |
'einstein.png') | |
torch.hub.download_url_to_file( | |
'https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Thomas_Edison2.jpg/1024px-Thomas_Edison2.jpg', | |
'edison.jpg') | |
torch.hub.download_url_to_file( | |
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Henry_Ford_1888.jpg/1024px-Henry_Ford_1888.jpg', | |
'Henry.jpg') | |
torch.hub.download_url_to_file( | |
'https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg/800px-Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg', | |
'Frida.jpg') | |
# determine models according to model names | |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') | |
netscale = 4 | |
model_path = os.path.join('weights', 'realesr-general-x4v3.pth') | |
# restorer | |
half = True if torch.cuda.is_available() else False | |
upsampler = RealESRGANer(scale=netscale, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) | |
# Use GFPGAN for face enhancement | |
from gfpgan_utils import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path='weights/GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) | |
os.makedirs('output', exist_ok=True) | |
def inference(img): | |
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) | |
h, w = img.shape[0:2] | |
if h < 400: | |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) | |
try: | |
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) | |
except RuntimeError as error: | |
print('Error', error) | |
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.') | |
else: | |
extension = 'png' | |
return output | |
title = "GFP-GAN" | |
description = "Gradio demo for GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2101.04061' target='_blank'>Towards Real-World Blind Face Restoration with Generative Facial Prior</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>" | |
gr.Interface( | |
inference, [gr.inputs.Image(type="filepath", label="Input")], | |
gr.outputs.Image(type="numpy", label="Output (The whole image)"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[['lincoln.jpg'], ['einstein.png'], ['edison.jpg'], ['Henry.jpg'], ['Frida.jpg']]).launch() | |