Spaces:
Running
on
A10G
Running
on
A10G
Xintao
commited on
Commit
·
76cb1c1
1
Parent(s):
dc21641
update
Browse files
app.py
CHANGED
@@ -8,8 +8,7 @@ from gfpgan.utils import GFPGANer
|
|
8 |
from realesrgan.utils import RealESRGANer
|
9 |
|
10 |
os.system("pip freeze")
|
11 |
-
os.system(
|
12 |
-
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
13 |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
14 |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
15 |
|
@@ -28,10 +27,9 @@ torch.hub.download_url_to_file(
|
|
28 |
|
29 |
# background enhancer with RealESRGAN
|
30 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
31 |
-
netscale = 4
|
32 |
model_path = 'realesr-general-x4v3.pth'
|
33 |
half = True if torch.cuda.is_available() else False
|
34 |
-
upsampler = RealESRGANer(scale=
|
35 |
|
36 |
# Use GFPGAN for face enhancement
|
37 |
face_enhancer_v3 = GFPGANer(
|
@@ -40,70 +38,80 @@ face_enhancer_v2 = GFPGANer(
|
|
40 |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
41 |
os.makedirs('output', exist_ok=True)
|
42 |
|
|
|
43 |
def inference(img, version, scale):
|
44 |
print(img, version, scale)
|
45 |
-
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
46 |
-
if len(img.shape) == 3 and img.shape[2] == 4:
|
47 |
-
img_mode = 'RGBA'
|
48 |
-
else:
|
49 |
-
img_mode = None
|
50 |
-
|
51 |
-
h, w = img.shape[0:2]
|
52 |
-
if h < 400:
|
53 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
54 |
-
|
55 |
-
if version == 'v1.2':
|
56 |
-
face_enhancer = face_enhancer_v2
|
57 |
-
else:
|
58 |
-
face_enhancer = face_enhancer_v3
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
70 |
-
h, w = img.shape[0:2]
|
71 |
-
output = cv2.resize(output, (int(w * scale /2), int(h * scale/2)), interpolation=interpolation)
|
72 |
-
except Exception as error:
|
73 |
-
print('wrong scale input.', error)
|
74 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
75 |
-
extension = 'png'
|
76 |
-
else:
|
77 |
-
extension = 'jpg'
|
78 |
-
save_path = f'output/out.{extension}'
|
79 |
-
cv2.imwrite(save_path, output)
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
title = "GFPGAN: Practical Face Restoration Algorithm"
|
86 |
-
description = r"""
|
87 |
-
<a href="https://github.com/TencentARC/GFPGAN" target='_blank'> <img src="https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social" alt="GFPGAN stars" /></a> Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
88 |
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
89 |
To use it, simply upload your image.
|
|
|
90 |
"""
|
91 |
-
article = r"""
|
92 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
93 |
|
94 |
-
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
95 |
-
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
96 |
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
98 |
"""
|
99 |
gr.Interface(
|
100 |
-
inference,
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
106 |
title=title,
|
107 |
description=description,
|
108 |
article=article,
|
109 |
-
examples=[['AI-generate.jpg', 'v1.3', 2], ['lincoln.jpg', 'v1.3',2], ['Blake_Lively.jpg', 'v1.3',2],
|
|
|
|
8 |
from realesrgan.utils import RealESRGANer
|
9 |
|
10 |
os.system("pip freeze")
|
11 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
|
|
12 |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
13 |
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
14 |
|
|
|
27 |
|
28 |
# background enhancer with RealESRGAN
|
29 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
|
|
30 |
model_path = 'realesr-general-x4v3.pth'
|
31 |
half = True if torch.cuda.is_available() else False
|
32 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
33 |
|
34 |
# Use GFPGAN for face enhancement
|
35 |
face_enhancer_v3 = GFPGANer(
|
|
|
38 |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
39 |
os.makedirs('output', exist_ok=True)
|
40 |
|
41 |
+
|
42 |
def inference(img, version, scale):
|
43 |
print(img, version, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
try:
|
45 |
+
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
46 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
47 |
+
img_mode = 'RGBA'
|
48 |
+
else:
|
49 |
+
img_mode = None
|
50 |
|
51 |
+
h, w = img.shape[0:2]
|
52 |
+
if h < 300:
|
53 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
if version == 'v1.2':
|
56 |
+
face_enhancer = face_enhancer_v2
|
57 |
+
else:
|
58 |
+
face_enhancer = face_enhancer_v3
|
59 |
+
try:
|
60 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
61 |
+
except RuntimeError as error:
|
62 |
+
print('Error', error)
|
63 |
+
else:
|
64 |
+
extension = 'png'
|
65 |
+
|
66 |
+
try:
|
67 |
+
if scale != 2:
|
68 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
69 |
+
h, w = img.shape[0:2]
|
70 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
71 |
+
except Exception as error:
|
72 |
+
print('wrong scale input.', error)
|
73 |
+
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
74 |
+
extension = 'png'
|
75 |
+
else:
|
76 |
+
extension = 'jpg'
|
77 |
+
save_path = f'output/out.{extension}'
|
78 |
+
cv2.imwrite(save_path, output)
|
79 |
+
|
80 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
81 |
+
return output, save_path
|
82 |
+
except Exception as error:
|
83 |
+
print('global exception', error)
|
84 |
+
return None, None
|
85 |
|
86 |
|
87 |
title = "GFPGAN: Practical Face Restoration Algorithm"
|
88 |
+
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
|
|
89 |
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
90 |
To use it, simply upload your image.
|
91 |
+
More details are in the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>Github Repo</b></a>.
|
92 |
"""
|
93 |
+
article = r"""
|
|
|
94 |
|
|
|
|
|
95 |
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
|
96 |
+
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
|
97 |
+
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
98 |
+
|
99 |
+
If you have any question, please email `[email protected]` or `[email protected]`.
|
100 |
|
101 |
+
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
102 |
+
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
103 |
"""
|
104 |
gr.Interface(
|
105 |
+
inference, [
|
106 |
+
gr.inputs.Image(type="filepath", label="Input"),
|
107 |
+
gr.inputs.Radio(['v1.2', 'v1.3'], type="value", default='v1.3', label='GFPGAN version'),
|
108 |
+
gr.inputs.Number(label="Rescaling factor", default=2)
|
109 |
+
], [
|
110 |
+
gr.outputs.Image(type="numpy", label="Output (The whole image)"),
|
111 |
+
gr.outputs.File(label="Download the output image")
|
112 |
+
],
|
113 |
title=title,
|
114 |
description=description,
|
115 |
article=article,
|
116 |
+
examples=[['AI-generate.jpg', 'v1.3', 2], ['lincoln.jpg', 'v1.3', 2], ['Blake_Lively.jpg', 'v1.3', 2],
|
117 |
+
['10045.png', 'v1.3', 2]]).launch()
|