import os import cv2 import torch from basicsr.utils import img2tensor, tensor2img from basicsr.utils.download_util import load_file_from_url from facexlib.utils.face_restoration_helper import FaceRestoreHelper from torchvision.transforms.functional import normalize from gfpganv1_clean_arch import GFPGANv1Clean ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) class GFPGANer(): """Helper for restoration with GFPGAN. It will detect and crop faces, and then resize the faces to 512x512. GFPGAN is used to restored the resized faces. The background is upsampled with the bg_upsampler. Finally, the faces will be pasted back to the upsample background image. Args: model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically). upscale (float): The upscale of the final output. Default: 2. arch (str): The GFPGAN architecture. Option: clean | original. Default: clean. channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2. bg_upsampler (nn.Module): The upsampler for the background. Default: None. """ def __init__(self, model_path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None): self.upscale = upscale self.bg_upsampler = bg_upsampler # initialize model self.device = torch.device('cuda') if device is None else device # initialize the GFP-GAN self.gfpgan = GFPGANv1Clean( out_size=512, num_style_feat=512, channel_multiplier=channel_multiplier, decoder_load_path=None, fix_decoder=False, num_mlp=8, input_is_latent=True, different_w=True, narrow=1, sft_half=True) # initialize face helper self.face_helper = FaceRestoreHelper( upscale, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=self.device) if model_path.startswith('https://'): model_path = load_file_from_url( url=model_path, model_dir=os.path.join(ROOT_DIR, 'gfpgan/weights'), progress=True, file_name=None) loadnet = torch.load(model_path) if 'params_ema' in loadnet: keyname = 'params_ema' else: keyname = 'params' self.gfpgan.load_state_dict(loadnet[keyname], strict=True) self.gfpgan.eval() self.gfpgan = self.gfpgan.to(self.device) @torch.no_grad() def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True): self.face_helper.clean_all() if has_aligned: # the inputs are already aligned img = cv2.resize(img, (512, 512)) self.face_helper.cropped_faces = [img] else: self.face_helper.read_image(img) # get face landmarks for each face self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. # align and warp each face self.face_helper.align_warp_face() # face restoration for cropped_face in self.face_helper.cropped_faces: # prepare data cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device) try: output = self.gfpgan(cropped_face_t, return_rgb=False)[0] # convert to image restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1)) except RuntimeError as error: print(f'\tFailed inference for GFPGAN: {error}.') restored_face = cropped_face restored_face = restored_face.astype('uint8') self.face_helper.add_restored_face(restored_face) if not has_aligned and paste_back: # upsample the background if self.bg_upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0] else: bg_img = None self.face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img) return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img else: return self.face_helper.cropped_faces, self.face_helper.restored_faces, None