Spaces:
Running
Running
File size: 6,049 Bytes
bf0a127 78e14e1 bf0a127 82f5cc2 78e14e1 82f5cc2 78e14e1 82f5cc2 78e14e1 79456a0 82f5cc2 78e14e1 82f5cc2 bf0a127 72f86cd bf0a127 3169d27 78e14e1 3169d27 bf0a127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import sys, os
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
net_g = None
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
return audio
def tts_fn(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale):
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker)
return "Success", (hps.data.sampling_rate, audio)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", default="./logs/Azuma/G_17400.pth", help="path of your model")
parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
parser.add_argument("--share", default=False, help="make link public")
parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")
args = parser.parse_args()
if args.debug:
logger.info("Enable DEBUG-LEVEL log")
logging.basicConfig(level=logging.DEBUG)
hps = utils.get_hparams_from_file(args.config_dir)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
'''
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
'''
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(args.model_dir, net_g, None, skip_optimizer=True)
speaker_ids = hps.data.spk2id
speakers = list(speaker_ids.keys())
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
gr.Markdown(value="""
【AI東雪蓮】在线语音合成(Bert-Vits2)\n
作者:Xz乔希 https://space.bilibili.com/5859321\n
声音归属:東雪蓮Official https://space.bilibili.com/1437582453\n
Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
【AI塔菲】语音合成:https://huggingface.co/spaces/XzJosh/Taffy-Bert-VITS2\n
【AI奶绿】https://huggingface.co/spaces/XzJosh/LAPLACE-Bert-VITS2\n
使用本模型请严格遵守法律法规!\n
发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n
""")
text = gr.TextArea(label="Text", placeholder="Input Text Here",
value="大家好啊,我是东雪莲,今天来点大家想看的东西啊。")
speaker = gr.Dropdown(choices=speakers, value=speakers[0], label='Speaker')
sdp_ratio = gr.Slider(minimum=0.1, maximum=1, value=0.2, step=0.1, label='SDP/DP混合比')
noise_scale = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.1, label='感情调节')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1, value=0.9, step=0.1, label='音素长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成长度')
btn = gr.Button("点击生成!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
btn.click(tts_fn,
inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale],
outputs=[text_output, audio_output])
# webbrowser.open("http://127.0.0.1:6006")
# app.launch(server_port=6006, show_error=True)
app.launch(show_error=True)
|