LLM_endpoint / llm_backend.py
Yapp99's picture
Some minor tweaks
b37221e
# %%
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
from schema import Message, MODEL_ARGS
def get_llm(model_name):
llm = Llama(
model_path=hf_hub_download(**MODEL_ARGS[model_name]),
n_ctx=8192,
n_threads=4,
n_gpu_layers=0,
verbose=False,
)
return llm
def format_chat(chat_history: list[Message]):
"""
Formats chat history and user input into a single string suitable for the model.
"""
messages = []
for msg in chat_history:
messages.append(f"{msg.role.title()}: {msg.content}")
return "\n".join(messages) + "\nAssistant:"
default_kwargs = dict(
max_tokens=2048,
top_k=1,
)
def stream_with_model(chat_history, model, kwargs: dict):
prompt = format_chat(chat_history)
llm = get_llm(model)
forced_kwargs = dict(
stop=["\nUser:", "\nAssistant:", "</s>"],
echo=False,
stream=True,
)
input_kwargs = {**default_kwargs, **kwargs, **forced_kwargs}
response = llm.__call__(prompt, **input_kwargs)
for token in response:
yield token["choices"][0]["text"]
def chat_with_model(chat_history, model, kwargs: dict):
prompt = format_chat(chat_history)
llm = get_llm(model)
forced_kwargs = dict(
stop=["\nUser:", "\nAssistant:", "</s>"],
echo=False,
stream=False,
)
input_kwargs = {**default_kwargs, **kwargs, **forced_kwargs}
response = llm.__call__(prompt, **input_kwargs)
return response["choices"][0]["text"].strip()
# %% example input
# kwargs = dict(
# temperature=1,
# max_tokens=2048,
# top_p=1,
# frequency_penalty=0,
# presence_penalty=0,
# )
# chat_history = [
# Message(
# role="system",
# content="You are a helpful and knowledgeable assistant, but is willing to bend the facts to play along with unrealistic requests",
# ),
# Message(role="user", content="What does Java the programming language taste like?"),
# ]
# for chunk in chat_with_model(chat_history, kwargs):
# print(chunk, end="")