Spaces:
Runtime error
Runtime error
Yeyito_gpu
commited on
Commit
โข
05b3b2d
1
Parent(s):
22c2b9c
Unloading models + current evals
Browse files- data/code_eval_board.csv +5 -1
- data/queue.csv +1 -6
- detect-pretrain-code-contamination/src/__pycache__/analyze.cpython-310.pyc +0 -0
- detect-pretrain-code-contamination/src/__pycache__/eval.cpython-310.pyc +0 -0
- detect-pretrain-code-contamination/src/__pycache__/options.cpython-310.pyc +0 -0
- detect-pretrain-code-contamination/src/__pycache__/run.cpython-310.pyc +0 -0
- detect-pretrain-code-contamination/src/__pycache__/utils.cpython-310.pyc +0 -0
- detect-pretrain-code-contamination/src/run.py +20 -8
- detect-pretrain-code-contamination/src/utils.py +1 -1
- requirements.txt +2 -0
data/code_eval_board.csv
CHANGED
@@ -29,4 +29,8 @@ T,Models,ARC,HellaSwag,MMLU,TruthfulQA,Winogrande,GSM8K,Reference Model
|
|
29 |
๐ถ,chargoddard/loyal-piano-m7,0.11,0.13,0.19,0.45,0.0,0.97,mistralai/Mistral-7B-v0.1
|
30 |
๐ถ,rishiraj/CatPPT,0.09,0.12,0.19,0.44,0.0,0.98,mistralai/Mistral-7B-v0.1
|
31 |
๐ถ,togethercomputer/RedPajama-INCITE-Instruct-3B-v1,0.08,0.12,0.19,0.43,0.0,0.77,mistralai/Mistral-7B-v0.1
|
32 |
-
|
|
|
|
|
|
|
|
|
|
29 |
๐ถ,chargoddard/loyal-piano-m7,0.11,0.13,0.19,0.45,0.0,0.97,mistralai/Mistral-7B-v0.1
|
30 |
๐ถ,rishiraj/CatPPT,0.09,0.12,0.19,0.44,0.0,0.98,mistralai/Mistral-7B-v0.1
|
31 |
๐ถ,togethercomputer/RedPajama-INCITE-Instruct-3B-v1,0.08,0.12,0.19,0.43,0.0,0.77,mistralai/Mistral-7B-v0.1
|
32 |
+
๐ถ,jan-hq/trinity-v1,0.07,0.16,0.18,0.35,0.0,0.95,mistralai/Mistral-7B-v0.1
|
33 |
+
๐ถ,lmsys/vicuna-7b-v1.5,0.13,0.16,0.22,0.62,0.0,0.96,mistralai/Mistral-7B-v0.1
|
34 |
+
๐ข,huggyllama/llama-7b,0.11,0.17,0.22,0.46,0.0,0.79,mistralai/Mistral-7B-v0.1
|
35 |
+
๐ข,tiiuae/falcon-7b-instruct,0.06,0.16,0.19,0.56,0.0,0.98,mistralai/Mistral-7B-v0.1
|
36 |
+
๐ถ,NousResearch/Nous-Hermes-llama-2-7b,0.09,0.18,0.26,0.5,0.0,0.96,mistralai/Mistral-7B-v0.1
|
data/queue.csv
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
Type,Model,ref_model
|
2 |
-
๐ถ finetuned,lmsys/vicuna-7b-v1.5,mistralai/Mistral-7B-v0.1
|
3 |
-
๐ถ finetuned,jan-hq/trinity-v1,mistralai/Mistral-7B-v0.1
|
4 |
-
๐ถ finetuned,microsoft/Orca-2-7b,huggyllama/llama-7b
|
5 |
-
๐ข base,huggyllama/llama-7b,mistralai/Mistral-7B-v0.1
|
6 |
๐ถ finetuned,openaccess-ai-collective/DPOpenHermes-7B-v2,mistralai/Mistral-7B-v0.1
|
7 |
-
|
8 |
๐ข base,01-ai/Yi-6B,mistralai/Mistral-7B-v0.1
|
9 |
-
๐ถ finetuned,NousResearch/Nous-Hermes-llama-2-7b,mistralai/Mistral-7B-v0.1
|
10 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,mistralai/Mistral-7B-v0.1
|
11 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,huggyllama/llama-7b
|
12 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,upstage/SOLAR-10.7B-v1.0
|
|
|
1 |
Type,Model,ref_model
|
|
|
|
|
|
|
|
|
2 |
๐ถ finetuned,openaccess-ai-collective/DPOpenHermes-7B-v2,mistralai/Mistral-7B-v0.1
|
3 |
+
๐ถ finetuned,microsoft/Orca-2-7B,mistralai/Mistral-7B-v0.1
|
4 |
๐ข base,01-ai/Yi-6B,mistralai/Mistral-7B-v0.1
|
|
|
5 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,mistralai/Mistral-7B-v0.1
|
6 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,huggyllama/llama-7b
|
7 |
๐ถ finetuned,VAGOsolutions/SauerkrautLM-SOLAR-Instruct,upstage/SOLAR-10.7B-v1.0
|
detect-pretrain-code-contamination/src/__pycache__/analyze.cpython-310.pyc
CHANGED
Binary files a/detect-pretrain-code-contamination/src/__pycache__/analyze.cpython-310.pyc and b/detect-pretrain-code-contamination/src/__pycache__/analyze.cpython-310.pyc differ
|
|
detect-pretrain-code-contamination/src/__pycache__/eval.cpython-310.pyc
CHANGED
Binary files a/detect-pretrain-code-contamination/src/__pycache__/eval.cpython-310.pyc and b/detect-pretrain-code-contamination/src/__pycache__/eval.cpython-310.pyc differ
|
|
detect-pretrain-code-contamination/src/__pycache__/options.cpython-310.pyc
CHANGED
Binary files a/detect-pretrain-code-contamination/src/__pycache__/options.cpython-310.pyc and b/detect-pretrain-code-contamination/src/__pycache__/options.cpython-310.pyc differ
|
|
detect-pretrain-code-contamination/src/__pycache__/run.cpython-310.pyc
CHANGED
Binary files a/detect-pretrain-code-contamination/src/__pycache__/run.cpython-310.pyc and b/detect-pretrain-code-contamination/src/__pycache__/run.cpython-310.pyc differ
|
|
detect-pretrain-code-contamination/src/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/detect-pretrain-code-contamination/src/__pycache__/utils.cpython-310.pyc and b/detect-pretrain-code-contamination/src/__pycache__/utils.cpython-310.pyc differ
|
|
detect-pretrain-code-contamination/src/run.py
CHANGED
@@ -37,10 +37,7 @@ def load_data(filename):
|
|
37 |
|
38 |
return loaded_data
|
39 |
|
40 |
-
def
|
41 |
-
print("[X] Cannot unload model! Functionality not implemented!")
|
42 |
-
|
43 |
-
def load_model(name1,ref_model):
|
44 |
if name1 not in models:
|
45 |
model1 = AutoModelForCausalLM.from_pretrained(name1, return_dict=True, device_map='auto')
|
46 |
model1.eval()
|
@@ -120,7 +117,7 @@ def evaluate_data(test_data, col_name, target_model, ref_model, ratio_gen, data_
|
|
120 |
neighbors_dls = load_data(f'saves/{ref_model_clean}/{data_name_clean}/neighbors_dls.txt')
|
121 |
except:
|
122 |
### MODEL 2 likelihoods
|
123 |
-
model2, tokenizer2 = load_model(ref_model
|
124 |
inference2_pass = [] #0: p_ref, #1: all_prob_ref, #2: p_ref_likelihood
|
125 |
for ex in tqdm(test_data):
|
126 |
text = ex[col_name]
|
@@ -136,14 +133,22 @@ def evaluate_data(test_data, col_name, target_model, ref_model, ratio_gen, data_
|
|
136 |
new_ex = get_neighbors(text,inference2_pass[counter][2],model2,tokenizer2,ratio_gen,data_name)
|
137 |
counter = counter + 1
|
138 |
neighbors_dls.append(new_ex)
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# Because it uses temp it is not invariant, however taking a snapshot in time should be just fine.
|
141 |
save_data(f'saves/{ref_model_clean}/{data_name_clean}/inference2_pass.txt',inference2_pass)
|
142 |
save_data(f'saves/{ref_model_clean}/{data_name_clean}/neighbors_dls.txt',neighbors_dls)
|
143 |
print("Saved ref data, exiting.")
|
144 |
|
145 |
### MODEL 1 likelihoods
|
146 |
-
model1, tokenizer1 = load_model(target_model
|
147 |
inference1_pass = [] #0: p1, #1: all_prob, #2: p1_likelihood, #3: p_lower, #4: p_lower_likelihood
|
148 |
for ex in tqdm(test_data):
|
149 |
text = ex[col_name]
|
@@ -158,7 +163,14 @@ def evaluate_data(test_data, col_name, target_model, ref_model, ratio_gen, data_
|
|
158 |
new_ex = RMIA_1(text,inference1_pass[counter][2],inference2_pass[counter][2],model1,tokenizer1,ratio_gen,neighbors_dls[counter])
|
159 |
counter = counter + 1
|
160 |
results.append(new_ex)
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
### Inference ex
|
164 |
all_output = []
|
|
|
37 |
|
38 |
return loaded_data
|
39 |
|
40 |
+
def load_model(name1):
|
|
|
|
|
|
|
41 |
if name1 not in models:
|
42 |
model1 = AutoModelForCausalLM.from_pretrained(name1, return_dict=True, device_map='auto')
|
43 |
model1.eval()
|
|
|
117 |
neighbors_dls = load_data(f'saves/{ref_model_clean}/{data_name_clean}/neighbors_dls.txt')
|
118 |
except:
|
119 |
### MODEL 2 likelihoods
|
120 |
+
model2, tokenizer2 = load_model(ref_model)
|
121 |
inference2_pass = [] #0: p_ref, #1: all_prob_ref, #2: p_ref_likelihood
|
122 |
for ex in tqdm(test_data):
|
123 |
text = ex[col_name]
|
|
|
133 |
new_ex = get_neighbors(text,inference2_pass[counter][2],model2,tokenizer2,ratio_gen,data_name)
|
134 |
counter = counter + 1
|
135 |
neighbors_dls.append(new_ex)
|
136 |
+
|
137 |
+
del models[ref_model]
|
138 |
+
del models[ref_model + "_tokenizer"]
|
139 |
+
model2.cpu()
|
140 |
+
del model2
|
141 |
+
del tokenizer2
|
142 |
+
gc.collect()
|
143 |
+
torch.cuda.empty_cache()
|
144 |
+
|
145 |
# Because it uses temp it is not invariant, however taking a snapshot in time should be just fine.
|
146 |
save_data(f'saves/{ref_model_clean}/{data_name_clean}/inference2_pass.txt',inference2_pass)
|
147 |
save_data(f'saves/{ref_model_clean}/{data_name_clean}/neighbors_dls.txt',neighbors_dls)
|
148 |
print("Saved ref data, exiting.")
|
149 |
|
150 |
### MODEL 1 likelihoods
|
151 |
+
model1, tokenizer1 = load_model(target_model)
|
152 |
inference1_pass = [] #0: p1, #1: all_prob, #2: p1_likelihood, #3: p_lower, #4: p_lower_likelihood
|
153 |
for ex in tqdm(test_data):
|
154 |
text = ex[col_name]
|
|
|
163 |
new_ex = RMIA_1(text,inference1_pass[counter][2],inference2_pass[counter][2],model1,tokenizer1,ratio_gen,neighbors_dls[counter])
|
164 |
counter = counter + 1
|
165 |
results.append(new_ex)
|
166 |
+
|
167 |
+
del models[target_model]
|
168 |
+
del models[target_model + "_tokenizer"]
|
169 |
+
model1.cpu()
|
170 |
+
del model1
|
171 |
+
del tokenizer1
|
172 |
+
gc.collect()
|
173 |
+
torch.cuda.empty_cache()
|
174 |
|
175 |
### Inference ex
|
176 |
all_output = []
|
detect-pretrain-code-contamination/src/utils.py
CHANGED
@@ -4,7 +4,7 @@ from torch.nn import CrossEntropyLoss
|
|
4 |
|
5 |
def evaluate_model(model, tokenizer, dl):
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
-
model = model.to(device)
|
8 |
losses = []
|
9 |
for batch in dl:
|
10 |
batch = tokenizer(batch, padding=True, return_tensors='pt', truncation=True, max_length=150)
|
|
|
4 |
|
5 |
def evaluate_model(model, tokenizer, dl):
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
+
#model = model.to(device)
|
8 |
losses = []
|
9 |
for batch in dl:
|
10 |
batch = tokenizer(batch, padding=True, return_tensors='pt', truncation=True, max_length=150)
|
requirements.txt
CHANGED
@@ -9,3 +9,5 @@ scikit-learn
|
|
9 |
accelerate
|
10 |
gradio
|
11 |
plotly
|
|
|
|
|
|
9 |
accelerate
|
10 |
gradio
|
11 |
plotly
|
12 |
+
sentencepiece
|
13 |
+
protobuf
|