|
from http import HTTPStatus |
|
from toolbox import get_conf |
|
import threading |
|
import logging |
|
|
|
timeout_bot_msg = '[Local Message] Request timeout. Network error.' |
|
|
|
class QwenRequestInstance(): |
|
def __init__(self): |
|
import dashscope |
|
self.time_to_yield_event = threading.Event() |
|
self.time_to_exit_event = threading.Event() |
|
self.result_buf = "" |
|
|
|
def validate_key(): |
|
DASHSCOPE_API_KEY = get_conf("DASHSCOPE_API_KEY") |
|
if DASHSCOPE_API_KEY == '': return False |
|
return True |
|
|
|
if not validate_key(): |
|
raise RuntimeError('请配置 DASHSCOPE_API_KEY') |
|
dashscope.api_key = get_conf("DASHSCOPE_API_KEY") |
|
|
|
|
|
def generate(self, inputs, llm_kwargs, history, system_prompt): |
|
|
|
from dashscope import Generation |
|
QWEN_MODEL = { |
|
'qwen-turbo': Generation.Models.qwen_turbo, |
|
'qwen-plus': Generation.Models.qwen_plus, |
|
'qwen-max': Generation.Models.qwen_max, |
|
}[llm_kwargs['llm_model']] |
|
top_p = llm_kwargs.get('top_p', 0.8) |
|
if top_p == 0: top_p += 1e-5 |
|
if top_p == 1: top_p -= 1e-5 |
|
|
|
self.result_buf = "" |
|
responses = Generation.call( |
|
model=QWEN_MODEL, |
|
messages=generate_message_payload(inputs, llm_kwargs, history, system_prompt), |
|
top_p=top_p, |
|
temperature=llm_kwargs.get('temperature', 1.0), |
|
result_format='message', |
|
stream=True, |
|
incremental_output=True |
|
) |
|
|
|
for response in responses: |
|
if response.status_code == HTTPStatus.OK: |
|
if response.output.choices[0].finish_reason == 'stop': |
|
yield self.result_buf |
|
break |
|
elif response.output.choices[0].finish_reason == 'length': |
|
self.result_buf += "[Local Message] 生成长度过长,后续输出被截断" |
|
yield self.result_buf |
|
break |
|
else: |
|
self.result_buf += response.output.choices[0].message.content |
|
yield self.result_buf |
|
else: |
|
self.result_buf += f"[Local Message] 请求错误:状态码:{response.status_code},错误码:{response.code},消息:{response.message}" |
|
yield self.result_buf |
|
break |
|
logging.info(f'[raw_input] {inputs}') |
|
logging.info(f'[response] {self.result_buf}') |
|
return self.result_buf |
|
|
|
|
|
def generate_message_payload(inputs, llm_kwargs, history, system_prompt): |
|
conversation_cnt = len(history) // 2 |
|
if system_prompt == '': system_prompt = 'Hello!' |
|
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}] |
|
if conversation_cnt: |
|
for index in range(0, 2*conversation_cnt, 2): |
|
what_i_have_asked = {} |
|
what_i_have_asked["role"] = "user" |
|
what_i_have_asked["content"] = history[index] |
|
what_gpt_answer = {} |
|
what_gpt_answer["role"] = "assistant" |
|
what_gpt_answer["content"] = history[index+1] |
|
if what_i_have_asked["content"] != "": |
|
if what_gpt_answer["content"] == "": |
|
continue |
|
if what_gpt_answer["content"] == timeout_bot_msg: |
|
continue |
|
messages.append(what_i_have_asked) |
|
messages.append(what_gpt_answer) |
|
else: |
|
messages[-1]['content'] = what_gpt_answer['content'] |
|
what_i_ask_now = {} |
|
what_i_ask_now["role"] = "user" |
|
what_i_ask_now["content"] = inputs |
|
messages.append(what_i_ask_now) |
|
return messages |
|
|