|
|
|
|
|
|
|
|
|
from toolbox import get_conf |
|
from zhipuai import ZhipuAI |
|
from toolbox import get_conf, encode_image, get_pictures_list |
|
import logging, os |
|
|
|
|
|
def input_encode_handler(inputs, llm_kwargs): |
|
if llm_kwargs["most_recent_uploaded"].get("path"): |
|
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"]) |
|
md_encode = [] |
|
for md_path in image_paths: |
|
type_ = os.path.splitext(md_path)[1].replace(".", "") |
|
type_ = "jpeg" if type_ == "jpg" else type_ |
|
md_encode.append({"data": encode_image(md_path), "type": type_}) |
|
return inputs, md_encode |
|
|
|
|
|
class ZhipuChatInit: |
|
|
|
def __init__(self): |
|
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL") |
|
if len(ZHIPUAI_MODEL) > 0: |
|
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用,请在LLM_MODEL中配置') |
|
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY) |
|
self.model = '' |
|
|
|
def __conversation_user(self, user_input: str, llm_kwargs): |
|
if self.model not in ["glm-4v"]: |
|
return {"role": "user", "content": user_input} |
|
else: |
|
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs) |
|
what_i_have_asked = {"role": "user", "content": []} |
|
what_i_have_asked['content'].append({"type": 'text', "text": user_input}) |
|
if encode_img: |
|
img_d = {"type": "image_url", |
|
"image_url": {'url': encode_img}} |
|
what_i_have_asked['content'].append(img_d) |
|
return what_i_have_asked |
|
|
|
def __conversation_history(self, history, llm_kwargs): |
|
messages = [] |
|
conversation_cnt = len(history) // 2 |
|
if conversation_cnt: |
|
for index in range(0, 2 * conversation_cnt, 2): |
|
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs) |
|
what_gpt_answer = { |
|
"role": "assistant", |
|
"content": history[index + 1] |
|
} |
|
messages.append(what_i_have_asked) |
|
messages.append(what_gpt_answer) |
|
return messages |
|
|
|
def __conversation_message_payload(self, inputs, llm_kwargs, history, system_prompt): |
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
self.model = llm_kwargs['llm_model'] |
|
messages.extend(self.__conversation_history(history, llm_kwargs)) |
|
messages.append(self.__conversation_user(inputs, llm_kwargs)) |
|
response = self.zhipu_bro.chat.completions.create( |
|
model=self.model, messages=messages, stream=True, |
|
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, |
|
top_p=llm_kwargs.get('top_p', 0.7) * 0.7, |
|
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), |
|
) |
|
return response |
|
|
|
def generate_chat(self, inputs, llm_kwargs, history, system_prompt): |
|
self.model = llm_kwargs['llm_model'] |
|
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt) |
|
bro_results = '' |
|
for chunk in response: |
|
bro_results += chunk.choices[0].delta.content |
|
yield chunk.choices[0].delta.content, bro_results |
|
|
|
|
|
if __name__ == '__main__': |
|
zhipu = ZhipuChatInit() |
|
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi') |
|
|