Yuliang commited on
Commit
487ee6d
1 Parent(s): add18ee

Support TEXTure

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +2 -1
  2. README.md +1 -1
  3. apps/IFGeo.py +4 -3
  4. apps/Normal.py +5 -4
  5. apps/avatarizer.py +172 -19
  6. apps/benchmark.py +18 -13
  7. apps/infer.py +64 -73
  8. apps/multi_render.py +4 -2
  9. configs/econ.yaml +1 -1
  10. docs/tricks.md +1 -1
  11. lib/common/BNI.py +8 -5
  12. lib/common/BNI_utils.py +42 -38
  13. lib/common/blender_utils.py +0 -383
  14. lib/common/cloth_extraction.py +9 -10
  15. lib/common/config.py +2 -1
  16. lib/common/imutils.py +24 -25
  17. lib/common/libmesh/inside_mesh.py +3 -4
  18. lib/common/libmesh/setup.py +1 -1
  19. lib/common/libmesh/triangle_hash.cpp +103 -103
  20. lib/common/libmesh/triangle_hash.pyx +4 -2
  21. lib/common/libvoxelize/voxelize.c +57 -57
  22. lib/common/libvoxelize/voxelize.pyx +2 -1
  23. lib/common/local_affine.py +9 -10
  24. lib/common/render.py +56 -63
  25. lib/common/render_utils.py +22 -7
  26. lib/common/seg3d_lossless.py +11 -21
  27. lib/common/seg3d_utils.py +7 -10
  28. lib/common/train_util.py +15 -41
  29. lib/common/voxelize.py +60 -74
  30. lib/dataset/EvalDataset.py +48 -54
  31. lib/dataset/Evaluator.py +13 -14
  32. lib/dataset/NormalDataset.py +22 -31
  33. lib/dataset/NormalModule.py +3 -3
  34. lib/dataset/PointFeat.py +2 -1
  35. lib/dataset/TestDataset.py +19 -23
  36. lib/dataset/body_model.py +33 -40
  37. lib/dataset/mesh_util.py +105 -75
  38. lib/net/BasePIFuNet.py +1 -1
  39. lib/net/Discriminator.py +7 -2
  40. lib/net/FBNet.py +22 -29
  41. lib/net/GANLoss.py +2 -1
  42. lib/net/IFGeoNet.py +7 -7
  43. lib/net/IFGeoNet_nobody.py +7 -7
  44. lib/net/NormalNet.py +10 -10
  45. lib/net/geometry.py +29 -37
  46. lib/net/net_util.py +3 -2
  47. lib/net/voxelize.py +3 -3
  48. lib/pixielib/models/FLAME.py +3 -2
  49. lib/pixielib/models/SMPLX.py +453 -468
  50. lib/pixielib/models/encoders.py +1 -1
.gitignore CHANGED
@@ -16,4 +16,5 @@ build
16
  dist
17
  *egg-info
18
  *.so
19
- run.sh
 
 
16
  dist
17
  *egg-info
18
  *.so
19
+ run.sh
20
+ *.log
README.md CHANGED
@@ -25,6 +25,7 @@
25
  <a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
26
  <a href="https://cupy.dev/"><img alt="cupy" src="https://img.shields.io/badge/-Cupy-46C02B?logo=numpy&logoColor=white"></a>
27
  <a href="https://twitter.com/yuliangxiu"><img alt='Twitter' src="https://img.shields.io/twitter/follow/yuliangxiu?label=%40yuliangxiu"></a>
 
28
  <br></br>
29
  <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a>
30
  <a href='https://github.com/YuliangXiu/ECON/blob/master/docs/installation-docker.md'><img src='https://img.shields.io/badge/Docker-9cf.svg?logo=Docker' alt='Docker'></a>
@@ -35,7 +36,6 @@
35
  </a>
36
  <a href='https://xiuyuliang.cn/econ/'>
37
  <img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
38
- <a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a>
39
  <a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
40
  </p>
41
  </p>
 
25
  <a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a>
26
  <a href="https://cupy.dev/"><img alt="cupy" src="https://img.shields.io/badge/-Cupy-46C02B?logo=numpy&logoColor=white"></a>
27
  <a href="https://twitter.com/yuliangxiu"><img alt='Twitter' src="https://img.shields.io/twitter/follow/yuliangxiu?label=%40yuliangxiu"></a>
28
+ <a href="https://discord.gg/Vqa7KBGRyk"><img alt="discord invitation link" src="https://dcbadge.vercel.app/api/server/Vqa7KBGRyk?style=flat"></a>
29
  <br></br>
30
  <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a>
31
  <a href='https://github.com/YuliangXiu/ECON/blob/master/docs/installation-docker.md'><img src='https://img.shields.io/badge/Docker-9cf.svg?logo=Docker' alt='Docker'></a>
 
36
  </a>
37
  <a href='https://xiuyuliang.cn/econ/'>
38
  <img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a>
 
39
  <a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a>
40
  </p>
41
  </p>
apps/IFGeo.py CHANGED
@@ -14,11 +14,12 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from lib.common.seg3d_lossless import Seg3dLossless
18
- from lib.common.train_util import *
19
- import torch
20
  import numpy as np
21
  import pytorch_lightning as pl
 
 
 
 
22
 
23
  torch.backends.cudnn.benchmark = True
24
 
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
17
  import numpy as np
18
  import pytorch_lightning as pl
19
+ import torch
20
+
21
+ from lib.common.seg3d_lossless import Seg3dLossless
22
+ from lib.common.train_util import *
23
 
24
  torch.backends.cudnn.benchmark = True
25
 
apps/Normal.py CHANGED
@@ -1,9 +1,10 @@
1
- from lib.net import NormalNet
2
- from lib.common.train_util import batch_mean
3
- import torch
4
  import numpy as np
5
- from skimage.transform import resize
6
  import pytorch_lightning as pl
 
 
 
 
 
7
 
8
 
9
  class Normal(pl.LightningModule):
 
 
 
 
1
  import numpy as np
 
2
  import pytorch_lightning as pl
3
+ import torch
4
+ from skimage.transform import resize
5
+
6
+ from lib.common.train_util import batch_mean
7
+ from lib.net import NormalNet
8
 
9
 
10
  class Normal(pl.LightningModule):
apps/avatarizer.py CHANGED
@@ -1,17 +1,25 @@
1
- import numpy as np
2
- import trimesh
3
- import torch
4
  import argparse
 
5
  import os.path as osp
6
- import lib.smplx as smplx
 
 
 
7
  from pytorch3d.ops import SubdivideMeshes
8
  from pytorch3d.structures import Meshes
9
-
10
- from lib.smplx.lbs import general_lbs
11
- from lib.dataset.mesh_util import keep_largest, poisson
12
  from scipy.spatial import cKDTree
13
- from lib.dataset.mesh_util import SMPLX
 
14
  from lib.common.local_affine import register
 
 
 
 
 
 
 
 
 
15
 
16
  # loading cfg file
17
  parser = argparse.ArgumentParser()
@@ -22,12 +30,18 @@ args = parser.parse_args()
22
  smplx_container = SMPLX()
23
  device = torch.device(f"cuda:{args.gpu}")
24
 
 
25
  prefix = f"./results/econ/obj/{args.name}"
26
  smpl_path = f"{prefix}_smpl_00.npy"
27
- econ_path = f"{prefix}_0_full.obj"
28
-
29
  smplx_param = np.load(smpl_path, allow_pickle=True).item()
 
 
 
30
  econ_obj = trimesh.load(econ_path)
 
 
 
 
31
  econ_obj.vertices *= np.array([1.0, -1.0, -1.0])
32
  econ_obj.vertices /= smplx_param["scale"].cpu().numpy()
33
  econ_obj.vertices -= smplx_param["transl"].cpu().numpy()
@@ -49,6 +63,7 @@ smpl_model = smplx.create(
49
 
50
  smpl_out_lst = []
51
 
 
52
  for pose_type in ["t-pose", "da-pose", "pose"]:
53
  smpl_out_lst.append(
54
  smpl_model(
@@ -67,6 +82,12 @@ for pose_type in ["t-pose", "da-pose", "pose"]:
67
  )
68
  )
69
 
 
 
 
 
 
 
70
  smpl_verts = smpl_out_lst[2].vertices.detach()[0]
71
  smpl_tree = cKDTree(smpl_verts.cpu().numpy())
72
  dist, idx = smpl_tree.query(econ_obj.vertices, k=5)
@@ -143,14 +164,25 @@ if not osp.exists(f"{prefix}_econ_da.obj") or not osp.exists(f"{prefix}_smpl_da.
143
  smpl_da_body.remove_unreferenced_vertices()
144
 
145
  smpl_hand = smpl_da.copy()
146
- smpl_hand.update_faces(smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1))
 
 
147
  smpl_hand.remove_unreferenced_vertices()
148
  econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
149
- econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, decimation=False)
 
150
  else:
151
  econ_da = trimesh.load(f"{prefix}_econ_da.obj")
152
  smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)
153
 
 
 
 
 
 
 
 
 
154
  smpl_tree = cKDTree(smpl_da.vertices)
155
  dist, idx = smpl_tree.query(econ_da.vertices, k=5)
156
  knn_weights = np.exp(-dist**2)
@@ -167,19 +199,137 @@ econ_posedirs = (
167
  econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10)
168
  econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True)
169
 
170
- # re-compute da-pose rot_mat for ECON
171
  rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
172
  econ_da_verts = torch.tensor(econ_da.vertices).float()
173
- econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat(
174
- [econ_da_verts, torch.ones_like(econ_da_verts)[..., :1]], dim=1
175
- ).unsqueeze(-1)
 
176
  econ_cano_verts = econ_cano_verts[:, :3, 0].double()
177
 
178
  # ----------------------------------------------------
179
- # use any SMPL-X pose to animate ECON reconstruction
180
  # ----------------------------------------------------
181
 
182
  new_pose = smpl_out_lst[2].full_pose
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  new_pose[:, :3] = 0.
184
 
185
  posed_econ_verts, _ = general_lbs(
@@ -191,5 +341,8 @@ posed_econ_verts, _ = general_lbs(
191
  lbs_weights=econ_lbs_weights
192
  )
193
 
194
- econ_pose = trimesh.Trimesh(posed_econ_verts[0].detach(), econ_da.faces)
195
- econ_pose.export(f"{prefix}_econ_pose.obj")
 
 
 
 
 
 
 
1
  import argparse
2
+ import os
3
  import os.path as osp
4
+
5
+ import numpy as np
6
+ import torch
7
+ import trimesh
8
  from pytorch3d.ops import SubdivideMeshes
9
  from pytorch3d.structures import Meshes
 
 
 
10
  from scipy.spatial import cKDTree
11
+
12
+ import lib.smplx as smplx
13
  from lib.common.local_affine import register
14
+ from lib.dataset.mesh_util import (
15
+ SMPLX,
16
+ export_obj,
17
+ keep_largest,
18
+ o3d_ransac,
19
+ poisson,
20
+ remesh_laplacian,
21
+ )
22
+ from lib.smplx.lbs import general_lbs
23
 
24
  # loading cfg file
25
  parser = argparse.ArgumentParser()
 
30
  smplx_container = SMPLX()
31
  device = torch.device(f"cuda:{args.gpu}")
32
 
33
+ # loading SMPL-X and econ objs inferred with ECON
34
  prefix = f"./results/econ/obj/{args.name}"
35
  smpl_path = f"{prefix}_smpl_00.npy"
 
 
36
  smplx_param = np.load(smpl_path, allow_pickle=True).item()
37
+
38
+ # export econ obj with pre-computed normals
39
+ econ_path = f"{prefix}_0_full.obj"
40
  econ_obj = trimesh.load(econ_path)
41
+ assert (econ_obj.vertex_normals.shape[1] == 3)
42
+ econ_obj.export(f"{prefix}_econ_raw.ply")
43
+
44
+ # align econ with SMPL-X
45
  econ_obj.vertices *= np.array([1.0, -1.0, -1.0])
46
  econ_obj.vertices /= smplx_param["scale"].cpu().numpy()
47
  econ_obj.vertices -= smplx_param["transl"].cpu().numpy()
 
63
 
64
  smpl_out_lst = []
65
 
66
+ # obtain the pose params of T-pose, DA-pose, and the original pose
67
  for pose_type in ["t-pose", "da-pose", "pose"]:
68
  smpl_out_lst.append(
69
  smpl_model(
 
82
  )
83
  )
84
 
85
+ # -------------------------- align econ and SMPL-X in DA-pose space ------------------------- #
86
+ # 1. find the vertex-correspondence between SMPL-X and econ
87
+ # 2. ECON + SMPL-X: posed space --> T-pose space --> DA-pose space
88
+ # 3. ECON (w/o hands & over-streched faces) + SMPL-X (w/ hands & registered inpainting parts)
89
+ # ------------------------------------------------------------------------------------------- #
90
+
91
  smpl_verts = smpl_out_lst[2].vertices.detach()[0]
92
  smpl_tree = cKDTree(smpl_verts.cpu().numpy())
93
  dist, idx = smpl_tree.query(econ_obj.vertices, k=5)
 
164
  smpl_da_body.remove_unreferenced_vertices()
165
 
166
  smpl_hand = smpl_da.copy()
167
+ smpl_hand.update_faces(
168
+ smplx_container.smplx_mano_vertex_mask.numpy()[smpl_hand.faces].all(axis=1)
169
+ )
170
  smpl_hand.remove_unreferenced_vertices()
171
  econ_da = sum([smpl_hand, smpl_da_body, econ_da_body])
172
+ econ_da = poisson(econ_da, f"{prefix}_econ_da.obj", depth=10, face_count=50000)
173
+ econ_da = remesh_laplacian(econ_da, f"{prefix}_econ_da.obj")
174
  else:
175
  econ_da = trimesh.load(f"{prefix}_econ_da.obj")
176
  smpl_da = trimesh.load(f"{prefix}_smpl_da.obj", maintain_orders=True, process=False)
177
 
178
+ # ---------------------- SMPL-X compatible ECON ---------------------- #
179
+ # 1. Find the new vertex-correspondence between NEW ECON and SMPL-X
180
+ # 2. Build the new J_regressor, lbs_weights, posedirs
181
+ # 3. canonicalize the NEW ECON
182
+ # ------------------------------------------------------------------- #
183
+
184
+ print("Start building the SMPL-X compatible ECON model...")
185
+
186
  smpl_tree = cKDTree(smpl_da.vertices)
187
  dist, idx = smpl_tree.query(econ_da.vertices, k=5)
188
  knn_weights = np.exp(-dist**2)
 
199
  econ_J_regressor /= econ_J_regressor.sum(dim=1, keepdims=True).clip(min=1e-10)
200
  econ_lbs_weights /= econ_lbs_weights.sum(dim=1, keepdims=True)
201
 
 
202
  rot_mat_da = smpl_out_lst[1].vertex_transformation.detach()[0][idx[:, 0]]
203
  econ_da_verts = torch.tensor(econ_da.vertices).float()
204
+ econ_cano_verts = torch.inverse(rot_mat_da) @ torch.cat([
205
+ econ_da_verts, torch.ones_like(econ_da_verts)[..., :1]
206
+ ],
207
+ dim=1).unsqueeze(-1)
208
  econ_cano_verts = econ_cano_verts[:, :3, 0].double()
209
 
210
  # ----------------------------------------------------
211
+ # use original pose to animate ECON reconstruction
212
  # ----------------------------------------------------
213
 
214
  new_pose = smpl_out_lst[2].full_pose
215
+ # new_pose[:, :3] = 0.
216
+
217
+ posed_econ_verts, _ = general_lbs(
218
+ pose=new_pose,
219
+ v_template=econ_cano_verts.unsqueeze(0),
220
+ posedirs=econ_posedirs,
221
+ J_regressor=econ_J_regressor,
222
+ parents=smpl_model.parents,
223
+ lbs_weights=econ_lbs_weights
224
+ )
225
+
226
+ aligned_econ_verts = posed_econ_verts[0].detach().cpu().numpy()
227
+ aligned_econ_verts += smplx_param["transl"].cpu().numpy()
228
+ aligned_econ_verts *= smplx_param["scale"].cpu().numpy() * np.array([1.0, -1.0, -1.0])
229
+ econ_pose = trimesh.Trimesh(aligned_econ_verts, econ_da.faces)
230
+ assert (econ_pose.vertex_normals.shape[1] == 3)
231
+ econ_pose.export(f"{prefix}_econ_pose.ply")
232
+
233
+ # -------------------------------------------------------------------------
234
+ # Align posed ECON with original ECON, for pixel-aligned texture extraction
235
+ # -------------------------------------------------------------------------
236
+
237
+ print("Start ICP registration between posed & original ECON...")
238
+ import open3d as o3d
239
+
240
+ source = o3d.io.read_point_cloud(f"{prefix}_econ_pose.ply")
241
+ target = o3d.io.read_point_cloud(f"{prefix}_econ_raw.ply")
242
+ trans_init = o3d_ransac(source, target)
243
+ icp_criteria = o3d.pipelines.registration.ICPConvergenceCriteria(
244
+ relative_fitness=0.000001, relative_rmse=0.000001, max_iteration=100
245
+ )
246
+
247
+ reg_p2l = o3d.pipelines.registration.registration_icp(
248
+ source,
249
+ target,
250
+ 0.1,
251
+ trans_init,
252
+ o3d.pipelines.registration.TransformationEstimationPointToPlane(),
253
+ criteria=icp_criteria
254
+ )
255
+ econ_pose.apply_transform(reg_p2l.transformation)
256
+
257
+ cache_path = f"{prefix.replace('obj','cache')}"
258
+ os.makedirs(cache_path, exist_ok=True)
259
+
260
+ # -----------------------------------------------------------------
261
+ # create UV texture (.obj .mtl .png) from posed ECON reconstruction
262
+ # -----------------------------------------------------------------
263
+
264
+ print("Start Color mapping...")
265
+ from PIL import Image
266
+ from torchvision import transforms
267
+
268
+ from lib.common.render import query_color
269
+ from lib.common.render_utils import Pytorch3dRasterizer
270
+
271
+ if not osp.exists(f"{prefix}_econ_icp_rgb.ply"):
272
+ masked_image = f"./results/econ/png/{args.name}_cloth.png"
273
+ tensor_image = transforms.ToTensor()(Image.open(masked_image))[:, :, :512]
274
+ final_colors = query_color(
275
+ torch.tensor(econ_pose.vertices).float(),
276
+ torch.tensor(econ_pose.faces).long(),
277
+ ((tensor_image - 0.5) * 2.0).unsqueeze(0).to(device),
278
+ device=device,
279
+ paint_normal=False,
280
+ )
281
+ final_colors[final_colors == tensor_image[:, 0, 0] * 255.0] = 0.0
282
+ final_colors = final_colors.detach().cpu().numpy()
283
+ econ_pose.visual.vertex_colors = final_colors
284
+ econ_pose.export(f"{prefix}_econ_icp_rgb.ply")
285
+ else:
286
+ mesh = trimesh.load(f"{prefix}_econ_icp_rgb.ply")
287
+ final_colors = mesh.visual.vertex_colors[:, :3]
288
+
289
+ print("Start UV texture generation...")
290
+
291
+ # Generate UV coords
292
+ v_np = econ_pose.vertices
293
+ f_np = econ_pose.faces
294
+
295
+ vt_cache = osp.join(cache_path, "vt.pt")
296
+ ft_cache = osp.join(cache_path, "ft.pt")
297
+
298
+ if osp.exists(vt_cache) and osp.exists(ft_cache):
299
+ vt = torch.load(vt_cache).to(device)
300
+ ft = torch.load(ft_cache).to(device)
301
+ else:
302
+ import xatlas
303
+ atlas = xatlas.Atlas()
304
+ atlas.add_mesh(v_np, f_np)
305
+ chart_options = xatlas.ChartOptions()
306
+ chart_options.max_iterations = 4
307
+ atlas.generate(chart_options=chart_options)
308
+ vmapping, ft_np, vt_np = atlas[0]
309
+
310
+ vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
311
+ ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)
312
+ torch.save(vt.cpu(), vt_cache)
313
+ torch.save(ft.cpu(), ft_cache)
314
+
315
+ # UV texture rendering
316
+ uv_rasterizer = Pytorch3dRasterizer(image_size=512, device=device)
317
+ texture_npy = uv_rasterizer.get_texture(
318
+ torch.cat([(vt - 0.5) * 2.0, torch.ones_like(vt[:, :1])], dim=1),
319
+ ft,
320
+ torch.tensor(v_np).unsqueeze(0).float(),
321
+ torch.tensor(f_np).unsqueeze(0).long(),
322
+ torch.tensor(final_colors).unsqueeze(0).float() / 255.0,
323
+ )
324
+
325
+ Image.fromarray((texture_npy * 255.0).astype(np.uint8)).save(f"{cache_path}/texture.png")
326
+
327
+ # UV mask for TEXTure (https://readpaper.com/paper/4720151447010820097)
328
+ texture_npy[texture_npy.sum(axis=2) == 0.0] = 1.0
329
+ Image.fromarray((texture_npy * 255.0).astype(np.uint8)).save(f"{cache_path}/mask.png")
330
+
331
+ # generate da-pose vertices
332
+ new_pose = smpl_out_lst[1].full_pose
333
  new_pose[:, :3] = 0.
334
 
335
  posed_econ_verts, _ = general_lbs(
 
341
  lbs_weights=econ_lbs_weights
342
  )
343
 
344
+ # export mtl file
345
+ mtl_string = f"newmtl mat0 \nKa 1.000000 1.000000 1.000000 \nKd 1.000000 1.000000 1.000000 \nKs 0.000000 0.000000 0.000000 \nTr 1.000000 \nillum 1 \nNs 0.000000\nmap_Kd texture.png"
346
+ with open(f"{cache_path}/material.mtl", 'w') as file:
347
+ file.write(mtl_string)
348
+ export_obj(posed_econ_verts[0].detach().cpu().numpy(), f_np, vt, ft, f"{cache_path}/mesh.obj")
apps/benchmark.py CHANGED
@@ -14,28 +14,29 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import warnings
18
  import logging
 
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
24
- import torch
25
  import argparse
26
  import os
27
 
 
28
  from termcolor import colored
29
  from tqdm.auto import tqdm
30
- from apps.Normal import Normal
31
  from apps.IFGeo import IFGeo
32
- from lib.common.config import cfg
33
  from lib.common.BNI import BNI
34
  from lib.common.BNI_utils import save_normal_tensor
 
 
35
  from lib.dataset.EvalDataset import EvalDataset
36
  from lib.dataset.Evaluator import Evaluator
37
  from lib.dataset.mesh_util import *
38
- from lib.common.voxelize import VoxelGrid
39
 
40
  torch.backends.cudnn.benchmark = True
41
  speed_analysis = False
@@ -62,8 +63,14 @@ if __name__ == "__main__":
62
  device = torch.device("cuda:0")
63
 
64
  cfg_test_list = [
65
- "dataset.rotation_num", 3, "bni.use_smpl", ["hand"], "bni.use_ifnet", args.ifnet,
66
- "bni.cut_intersection", True,
 
 
 
 
 
 
67
  ]
68
 
69
  # # if w/ RenderPeople+CAPE
@@ -176,12 +183,10 @@ if __name__ == "__main__":
176
 
177
  # mesh completion via IF-net
178
  in_tensor.update(
179
- dataset.depth_to_voxel(
180
- {
181
- "depth_F": BNI_object.F_depth.unsqueeze(0).to(device),
182
- "depth_B": BNI_object.B_depth.unsqueeze(0).to(device)
183
- }
184
- )
185
  )
186
 
187
  occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import logging
18
+ import warnings
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
 
24
  import argparse
25
  import os
26
 
27
+ import torch
28
  from termcolor import colored
29
  from tqdm.auto import tqdm
30
+
31
  from apps.IFGeo import IFGeo
32
+ from apps.Normal import Normal
33
  from lib.common.BNI import BNI
34
  from lib.common.BNI_utils import save_normal_tensor
35
+ from lib.common.config import cfg
36
+ from lib.common.voxelize import VoxelGrid
37
  from lib.dataset.EvalDataset import EvalDataset
38
  from lib.dataset.Evaluator import Evaluator
39
  from lib.dataset.mesh_util import *
 
40
 
41
  torch.backends.cudnn.benchmark = True
42
  speed_analysis = False
 
63
  device = torch.device("cuda:0")
64
 
65
  cfg_test_list = [
66
+ "dataset.rotation_num",
67
+ 3,
68
+ "bni.use_smpl",
69
+ ["hand"],
70
+ "bni.use_ifnet",
71
+ args.ifnet,
72
+ "bni.cut_intersection",
73
+ True,
74
  ]
75
 
76
  # # if w/ RenderPeople+CAPE
 
183
 
184
  # mesh completion via IF-net
185
  in_tensor.update(
186
+ dataset.depth_to_voxel({
187
+ "depth_F": BNI_object.F_depth.unsqueeze(0).to(device), "depth_B":
188
+ BNI_object.B_depth.unsqueeze(0).to(device)
189
+ })
 
 
190
  )
191
 
192
  occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
apps/infer.py CHANGED
@@ -14,35 +14,37 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import warnings
18
  import logging
 
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
24
- import torch, torchvision
25
- import trimesh
26
- import numpy as np
27
  import argparse
28
  import os
29
 
 
 
 
 
 
30
  from termcolor import colored
31
  from tqdm.auto import tqdm
32
- from apps.Normal import Normal
33
  from apps.IFGeo import IFGeo
34
- from pytorch3d.ops import SubdivideMeshes
35
- from lib.common.config import cfg
36
- from lib.common.render import query_color
37
- from lib.common.train_util import init_loss, Format
38
- from lib.common.imutils import blend_rgb_norm
39
  from lib.common.BNI import BNI
40
  from lib.common.BNI_utils import save_normal_tensor
41
- from lib.dataset.TestDataset import TestDataset
 
42
  from lib.common.local_affine import register
43
- from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis
44
- from lib.dataset.mesh_util import *
45
  from lib.common.voxelize import VoxelGrid
 
 
 
46
 
47
  torch.backends.cudnn.benchmark = True
48
 
@@ -146,9 +148,8 @@ if __name__ == "__main__":
146
  os.makedirs(osp.join(args.out_dir, cfg.name, "obj"), exist_ok=True)
147
 
148
  in_tensor = {
149
- "smpl_faces": data["smpl_faces"],
150
- "image": data["img_icon"].to(device),
151
- "mask": data["img_mask"].to(device)
152
  }
153
 
154
  # The optimizer and variables
@@ -157,9 +158,11 @@ if __name__ == "__main__":
157
  optimed_betas = data["betas"].requires_grad_(True)
158
  optimed_orient = data["global_orient"].requires_grad_(True)
159
 
160
- optimizer_smpl = torch.optim.Adam(
161
- [optimed_pose, optimed_trans, optimed_betas, optimed_orient], lr=1e-2, amsgrad=True
162
- )
 
 
163
  scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
164
  optimizer_smpl,
165
  mode="min",
@@ -234,9 +237,9 @@ if __name__ == "__main__":
234
  )
235
 
236
  smpl_verts = (smpl_verts + optimed_trans) * data["scale"]
237
- smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor(
238
- [1.0, 1.0, -1.0]
239
- ).to(device)
240
 
241
  # landmark errors
242
  smpl_joints_3d = (
@@ -280,13 +283,11 @@ if __name__ == "__main__":
280
 
281
  # BUG: PyTorch3D silhouette renderer generates dilated mask
282
  bg_value = in_tensor["T_normal_F"][0, 0, 0, 0]
283
- smpl_arr_fake = torch.cat(
284
- [
285
- in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
286
- in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
287
- ],
288
- dim=-1
289
- )
290
 
291
  body_overlap = (gt_arr * smpl_arr_fake.gt(0.0)
292
  ).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2])
@@ -322,22 +323,18 @@ if __name__ == "__main__":
322
  # save intermediate results
323
  if (i == args.loop_smpl - 1) and (not args.novis):
324
 
325
- per_loop_lst.extend(
326
- [
327
- in_tensor["image"],
328
- in_tensor["T_normal_F"],
329
- in_tensor["normal_F"],
330
- diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1),
331
- ]
332
- )
333
- per_loop_lst.extend(
334
- [
335
- in_tensor["image"],
336
- in_tensor["T_normal_B"],
337
- in_tensor["normal_B"],
338
- diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1),
339
- ]
340
- )
341
  per_data_lst.append(
342
  get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl")
343
  )
@@ -357,13 +354,11 @@ if __name__ == "__main__":
357
  if not args.novis:
358
  img_crop_path = osp.join(args.out_dir, cfg.name, "png", f"{data['name']}_crop.png")
359
  torchvision.utils.save_image(
360
- torch.cat(
361
- [
362
- data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
363
- (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
364
- ],
365
- dim=3
366
- ), img_crop_path
367
  )
368
 
369
  rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
@@ -392,27 +387,25 @@ if __name__ == "__main__":
392
  smpl_obj.export(smpl_obj_path)
393
  smpl_info = {
394
  "betas":
395
- optimed_betas[idx].detach().cpu().unsqueeze(0),
396
  "body_pose":
397
- rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()
398
- ).cpu().unsqueeze(0),
399
  "global_orient":
400
- rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()
401
- ).cpu().unsqueeze(0),
402
  "transl":
403
- optimed_trans[idx].detach().cpu(),
404
  "expression":
405
- data["exp"][idx].cpu().unsqueeze(0),
406
  "jaw_pose":
407
- rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0),
408
  "left_hand_pose":
409
- rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]
410
- ).cpu().unsqueeze(0),
411
  "right_hand_pose":
412
- rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]
413
- ).cpu().unsqueeze(0),
414
  "scale":
415
- data["scale"][idx].cpu(),
416
  }
417
  np.save(
418
  smpl_obj_path.replace(".obj", ".npy"),
@@ -434,8 +427,8 @@ if __name__ == "__main__":
434
 
435
  per_data_lst = []
436
 
437
- batch_smpl_verts = in_tensor["smpl_verts"].detach(
438
- ) * torch.tensor([1.0, -1.0, 1.0], device=device)
439
  batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]]
440
 
441
  in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
@@ -491,12 +484,10 @@ if __name__ == "__main__":
491
 
492
  # mesh completion via IF-net
493
  in_tensor.update(
494
- dataset.depth_to_voxel(
495
- {
496
- "depth_F": BNI_object.F_depth.unsqueeze(0),
497
- "depth_B": BNI_object.B_depth.unsqueeze(0)
498
- }
499
- )
500
  )
501
 
502
  occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import logging
18
+ import warnings
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
 
 
 
24
  import argparse
25
  import os
26
 
27
+ import numpy as np
28
+ import torch
29
+ import torchvision
30
+ import trimesh
31
+ from pytorch3d.ops import SubdivideMeshes
32
  from termcolor import colored
33
  from tqdm.auto import tqdm
34
+
35
  from apps.IFGeo import IFGeo
36
+ from apps.Normal import Normal
 
 
 
 
37
  from lib.common.BNI import BNI
38
  from lib.common.BNI_utils import save_normal_tensor
39
+ from lib.common.config import cfg
40
+ from lib.common.imutils import blend_rgb_norm
41
  from lib.common.local_affine import register
42
+ from lib.common.render import query_color
43
+ from lib.common.train_util import Format, init_loss
44
  from lib.common.voxelize import VoxelGrid
45
+ from lib.dataset.mesh_util import *
46
+ from lib.dataset.TestDataset import TestDataset
47
+ from lib.net.geometry import rot6d_to_rotmat, rotation_matrix_to_angle_axis
48
 
49
  torch.backends.cudnn.benchmark = True
50
 
 
148
  os.makedirs(osp.join(args.out_dir, cfg.name, "obj"), exist_ok=True)
149
 
150
  in_tensor = {
151
+ "smpl_faces": data["smpl_faces"], "image": data["img_icon"].to(device), "mask":
152
+ data["img_mask"].to(device)
 
153
  }
154
 
155
  # The optimizer and variables
 
158
  optimed_betas = data["betas"].requires_grad_(True)
159
  optimed_orient = data["global_orient"].requires_grad_(True)
160
 
161
+ optimizer_smpl = torch.optim.Adam([
162
+ optimed_pose, optimed_trans, optimed_betas, optimed_orient
163
+ ],
164
+ lr=1e-2,
165
+ amsgrad=True)
166
  scheduler_smpl = torch.optim.lr_scheduler.ReduceLROnPlateau(
167
  optimizer_smpl,
168
  mode="min",
 
237
  )
238
 
239
  smpl_verts = (smpl_verts + optimed_trans) * data["scale"]
240
+ smpl_joints = (smpl_joints + optimed_trans) * data["scale"] * torch.tensor([
241
+ 1.0, 1.0, -1.0
242
+ ]).to(device)
243
 
244
  # landmark errors
245
  smpl_joints_3d = (
 
283
 
284
  # BUG: PyTorch3D silhouette renderer generates dilated mask
285
  bg_value = in_tensor["T_normal_F"][0, 0, 0, 0]
286
+ smpl_arr_fake = torch.cat([
287
+ in_tensor["T_normal_F"][:, 0].ne(bg_value).float(),
288
+ in_tensor["T_normal_B"][:, 0].ne(bg_value).float()
289
+ ],
290
+ dim=-1)
 
 
291
 
292
  body_overlap = (gt_arr * smpl_arr_fake.gt(0.0)
293
  ).sum(dim=[1, 2]) / smpl_arr_fake.gt(0.0).sum(dim=[1, 2])
 
323
  # save intermediate results
324
  if (i == args.loop_smpl - 1) and (not args.novis):
325
 
326
+ per_loop_lst.extend([
327
+ in_tensor["image"],
328
+ in_tensor["T_normal_F"],
329
+ in_tensor["normal_F"],
330
+ diff_S[:, :, :512].unsqueeze(1).repeat(1, 3, 1, 1),
331
+ ])
332
+ per_loop_lst.extend([
333
+ in_tensor["image"],
334
+ in_tensor["T_normal_B"],
335
+ in_tensor["normal_B"],
336
+ diff_S[:, :, 512:].unsqueeze(1).repeat(1, 3, 1, 1),
337
+ ])
 
 
 
 
338
  per_data_lst.append(
339
  get_optim_grid_image(per_loop_lst, None, nrow=N_body * 2, type="smpl")
340
  )
 
354
  if not args.novis:
355
  img_crop_path = osp.join(args.out_dir, cfg.name, "png", f"{data['name']}_crop.png")
356
  torchvision.utils.save_image(
357
+ torch.cat([
358
+ data["img_crop"][:, :3], (in_tensor['normal_F'].detach().cpu() + 1.0) * 0.5,
359
+ (in_tensor['normal_B'].detach().cpu() + 1.0) * 0.5
360
+ ],
361
+ dim=3), img_crop_path
 
 
362
  )
363
 
364
  rgb_norm_F = blend_rgb_norm(in_tensor["normal_F"], data)
 
387
  smpl_obj.export(smpl_obj_path)
388
  smpl_info = {
389
  "betas":
390
+ optimed_betas[idx].detach().cpu().unsqueeze(0),
391
  "body_pose":
392
+ rotation_matrix_to_angle_axis(optimed_pose_mat[idx].detach()
393
+ ).cpu().unsqueeze(0),
394
  "global_orient":
395
+ rotation_matrix_to_angle_axis(optimed_orient_mat[idx].detach()
396
+ ).cpu().unsqueeze(0),
397
  "transl":
398
+ optimed_trans[idx].detach().cpu(),
399
  "expression":
400
+ data["exp"][idx].cpu().unsqueeze(0),
401
  "jaw_pose":
402
+ rotation_matrix_to_angle_axis(data["jaw_pose"][idx]).cpu().unsqueeze(0),
403
  "left_hand_pose":
404
+ rotation_matrix_to_angle_axis(data["left_hand_pose"][idx]).cpu().unsqueeze(0),
 
405
  "right_hand_pose":
406
+ rotation_matrix_to_angle_axis(data["right_hand_pose"][idx]).cpu().unsqueeze(0),
 
407
  "scale":
408
+ data["scale"][idx].cpu(),
409
  }
410
  np.save(
411
  smpl_obj_path.replace(".obj", ".npy"),
 
427
 
428
  per_data_lst = []
429
 
430
+ batch_smpl_verts = in_tensor["smpl_verts"].detach() * torch.tensor([1.0, -1.0, 1.0],
431
+ device=device)
432
  batch_smpl_faces = in_tensor["smpl_faces"].detach()[:, :, [0, 2, 1]]
433
 
434
  in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth(
 
484
 
485
  # mesh completion via IF-net
486
  in_tensor.update(
487
+ dataset.depth_to_voxel({
488
+ "depth_F": BNI_object.F_depth.unsqueeze(0), "depth_B":
489
+ BNI_object.B_depth.unsqueeze(0)
490
+ })
 
 
491
  )
492
 
493
  occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[
apps/multi_render.py CHANGED
@@ -1,7 +1,9 @@
1
- from lib.common.render import Render
2
- import torch
3
  import argparse
4
 
 
 
 
 
5
  root = "./results/econ/vid"
6
 
7
  # loading cfg file
 
 
 
1
  import argparse
2
 
3
+ import torch
4
+
5
+ from lib.common.render import Render
6
+
7
  root = "./results/econ/vid"
8
 
9
  # loading cfg file
configs/econ.yaml CHANGED
@@ -28,7 +28,7 @@ bni:
28
  lambda1: 1e-4
29
  boundary_consist: 1e-6
30
  poisson_depth: 10
31
- use_smpl: ["hand", "face"]
32
  use_ifnet: False
33
  use_poisson: True
34
  hand_thres: 8e-2
 
28
  lambda1: 1e-4
29
  boundary_consist: 1e-6
30
  poisson_depth: 10
31
+ use_smpl: ["hand"]
32
  use_ifnet: False
33
  use_poisson: True
34
  hand_thres: 8e-2
docs/tricks.md CHANGED
@@ -2,7 +2,7 @@
2
 
3
  ### If the reconstructed geometry is not satisfying, play with the adjustable parameters in _config/econ.yaml_
4
 
5
- - `use_smpl: ["hand", "face"]`
6
  - [ ]: don't use either hands or face parts from SMPL-X
7
  - ["hand"]: only use the **visible** hands from SMPL-X
8
  - ["hand", "face"]: use both **visible** hands and face from SMPL-X
 
2
 
3
  ### If the reconstructed geometry is not satisfying, play with the adjustable parameters in _config/econ.yaml_
4
 
5
+ - `use_smpl: ["hand"]`
6
  - [ ]: don't use either hands or face parts from SMPL-X
7
  - ["hand"]: only use the **visible** hands from SMPL-X
8
  - ["hand", "face"]: use both **visible** hands and face from SMPL-X
lib/common/BNI.py CHANGED
@@ -1,10 +1,12 @@
1
- from lib.common.BNI_utils import (
2
- verts_inverse_transform, depth_inverse_transform, double_side_bilateral_normal_integration
3
- )
4
-
5
  import torch
6
  import trimesh
7
 
 
 
 
 
 
 
8
 
9
  class BNI:
10
  def __init__(self, dir_path, name, BNI_dict, cfg, device):
@@ -84,8 +86,9 @@ class BNI:
84
 
85
  if __name__ == "__main__":
86
 
87
- import numpy as np
88
  import os.path as osp
 
 
89
  from tqdm import tqdm
90
 
91
  root = "/home/yxiu/Code/ECON/results/examples/BNI"
 
 
 
 
 
1
  import torch
2
  import trimesh
3
 
4
+ from lib.common.BNI_utils import (
5
+ depth_inverse_transform,
6
+ double_side_bilateral_normal_integration,
7
+ verts_inverse_transform,
8
+ )
9
+
10
 
11
  class BNI:
12
  def __init__(self, dir_path, name, BNI_dict, cfg, device):
 
86
 
87
  if __name__ == "__main__":
88
 
 
89
  import os.path as osp
90
+
91
+ import numpy as np
92
  from tqdm import tqdm
93
 
94
  root = "/home/yxiu/Code/ECON/results/examples/BNI"
lib/common/BNI_utils.py CHANGED
@@ -1,13 +1,23 @@
1
- import torch
2
- import trimesh
3
- import cv2, os
4
- from PIL import Image
5
  import os.path as osp
 
6
  import cupy as cp
 
7
  import numpy as np
8
- from cupyx.scipy.sparse import csr_matrix, vstack, hstack, spdiags, diags, coo_matrix
 
 
 
 
 
 
 
 
 
9
  from cupyx.scipy.sparse.linalg import cg
 
10
  from tqdm.auto import tqdm
 
11
  from lib.dataset.mesh_util import clean_floats
12
 
13
 
@@ -68,13 +78,11 @@ def mean_value_cordinates(inner_pts, contour_pts):
68
  body_edges_c = np.roll(body_edges_a, shift=-1, axis=1)
69
  body_edges_b = np.sqrt(((contour_pts - np.roll(contour_pts, shift=-1, axis=0))**2).sum(axis=1))
70
 
71
- body_edges = np.concatenate(
72
- [
73
- body_edges_a[..., None], body_edges_c[..., None],
74
- np.repeat(body_edges_b[None, :, None], axis=0, repeats=len(inner_pts))
75
- ],
76
- axis=-1
77
- )
78
 
79
  body_cos = (body_edges[:, :, 0]**2 + body_edges[:, :, 1]**2 -
80
  body_edges[:, :, 2]**2) / (2 * body_edges[:, :, 0] * body_edges[:, :, 1])
@@ -167,9 +175,9 @@ def verts_transform(t, depth_scale):
167
  t_copy = t.clone()
168
  t_copy *= depth_scale * 0.5
169
  t_copy += depth_scale * 0.5
170
- t_copy = t_copy[:, [1, 0, 2]] * torch.Tensor([2.0, 2.0, -2.0]) + torch.Tensor(
171
- [0.0, 0.0, depth_scale]
172
- )
173
 
174
  return t_copy
175
 
@@ -342,15 +350,13 @@ def construct_facets_from(mask):
342
  facet_bottom_left_mask = move_bottom(facet_top_left_mask)
343
  facet_bottom_right_mask = move_bottom_right(facet_top_left_mask)
344
 
345
- return cp.hstack(
346
- (
347
- 4 * cp.ones((cp.sum(facet_top_left_mask).item(), 1)),
348
- idx[facet_top_left_mask][:, None],
349
- idx[facet_bottom_left_mask][:, None],
350
- idx[facet_bottom_right_mask][:, None],
351
- idx[facet_top_right_mask][:, None],
352
- )
353
- ).astype(int)
354
 
355
 
356
  def map_depth_map_to_point_clouds(depth_map, mask, K=None, step_size=1):
@@ -614,7 +620,7 @@ def double_side_bilateral_normal_integration(
614
 
615
  energy_list.append(energy)
616
  relative_energy = cp.abs(energy - energy_old) / energy_old
617
-
618
  # print(f"step {i + 1}/{max_iter} energy: {energy:.3e}"
619
  # f" relative energy: {relative_energy:.3e}")
620
 
@@ -640,13 +646,11 @@ def double_side_bilateral_normal_integration(
640
  B_verts = verts_inverse_transform(torch.as_tensor(vertices_back).float(), 256.0)
641
 
642
  F_B_verts = torch.cat((F_verts, B_verts), dim=0)
643
- F_B_faces = torch.cat(
644
- (
645
- torch.as_tensor(faces_front_).long(),
646
- torch.as_tensor(faces_back_).long() + faces_front_.max() + 1
647
- ),
648
- dim=0
649
- )
650
 
651
  front_surf = trimesh.Trimesh(F_verts, faces_front_)
652
  back_surf = trimesh.Trimesh(B_verts, faces_back_)
@@ -690,12 +694,12 @@ def double_side_bilateral_normal_integration(
690
  back_mesh = clean_floats(trimesh.Trimesh(vertices_back, faces_back))
691
 
692
  result = {
693
- "F_verts": torch.as_tensor(front_mesh.vertices).float(),
694
- "F_faces": torch.as_tensor(front_mesh.faces).long(),
695
- "B_verts": torch.as_tensor(back_mesh.vertices).float(),
696
- "B_faces": torch.as_tensor(back_mesh.faces).long(),
697
- "F_depth": torch.as_tensor(depth_map_front_est).float(),
698
- "B_depth": torch.as_tensor(depth_map_back_est).float()
699
  }
700
 
701
  return result
 
1
+ import os
 
 
 
2
  import os.path as osp
3
+
4
  import cupy as cp
5
+ import cv2
6
  import numpy as np
7
+ import torch
8
+ import trimesh
9
+ from cupyx.scipy.sparse import (
10
+ coo_matrix,
11
+ csr_matrix,
12
+ diags,
13
+ hstack,
14
+ spdiags,
15
+ vstack,
16
+ )
17
  from cupyx.scipy.sparse.linalg import cg
18
+ from PIL import Image
19
  from tqdm.auto import tqdm
20
+
21
  from lib.dataset.mesh_util import clean_floats
22
 
23
 
 
78
  body_edges_c = np.roll(body_edges_a, shift=-1, axis=1)
79
  body_edges_b = np.sqrt(((contour_pts - np.roll(contour_pts, shift=-1, axis=0))**2).sum(axis=1))
80
 
81
+ body_edges = np.concatenate([
82
+ body_edges_a[..., None], body_edges_c[..., None],
83
+ np.repeat(body_edges_b[None, :, None], axis=0, repeats=len(inner_pts))
84
+ ],
85
+ axis=-1)
 
 
86
 
87
  body_cos = (body_edges[:, :, 0]**2 + body_edges[:, :, 1]**2 -
88
  body_edges[:, :, 2]**2) / (2 * body_edges[:, :, 0] * body_edges[:, :, 1])
 
175
  t_copy = t.clone()
176
  t_copy *= depth_scale * 0.5
177
  t_copy += depth_scale * 0.5
178
+ t_copy = t_copy[:, [1, 0, 2]] * torch.Tensor([2.0, 2.0, -2.0]) + torch.Tensor([
179
+ 0.0, 0.0, depth_scale
180
+ ])
181
 
182
  return t_copy
183
 
 
350
  facet_bottom_left_mask = move_bottom(facet_top_left_mask)
351
  facet_bottom_right_mask = move_bottom_right(facet_top_left_mask)
352
 
353
+ return cp.hstack((
354
+ 4 * cp.ones((cp.sum(facet_top_left_mask).item(), 1)),
355
+ idx[facet_top_left_mask][:, None],
356
+ idx[facet_bottom_left_mask][:, None],
357
+ idx[facet_bottom_right_mask][:, None],
358
+ idx[facet_top_right_mask][:, None],
359
+ )).astype(int)
 
 
360
 
361
 
362
  def map_depth_map_to_point_clouds(depth_map, mask, K=None, step_size=1):
 
620
 
621
  energy_list.append(energy)
622
  relative_energy = cp.abs(energy - energy_old) / energy_old
623
+
624
  # print(f"step {i + 1}/{max_iter} energy: {energy:.3e}"
625
  # f" relative energy: {relative_energy:.3e}")
626
 
 
646
  B_verts = verts_inverse_transform(torch.as_tensor(vertices_back).float(), 256.0)
647
 
648
  F_B_verts = torch.cat((F_verts, B_verts), dim=0)
649
+ F_B_faces = torch.cat((
650
+ torch.as_tensor(faces_front_).long(),
651
+ torch.as_tensor(faces_back_).long() + faces_front_.max() + 1
652
+ ),
653
+ dim=0)
 
 
654
 
655
  front_surf = trimesh.Trimesh(F_verts, faces_front_)
656
  back_surf = trimesh.Trimesh(B_verts, faces_back_)
 
694
  back_mesh = clean_floats(trimesh.Trimesh(vertices_back, faces_back))
695
 
696
  result = {
697
+ "F_verts": torch.as_tensor(front_mesh.vertices).float(), "F_faces": torch.as_tensor(
698
+ front_mesh.faces
699
+ ).long(), "B_verts": torch.as_tensor(back_mesh.vertices).float(), "B_faces":
700
+ torch.as_tensor(back_mesh.faces).long(), "F_depth":
701
+ torch.as_tensor(depth_map_front_est).float(), "B_depth":
702
+ torch.as_tensor(depth_map_back_est).float()
703
  }
704
 
705
  return result
lib/common/blender_utils.py DELETED
@@ -1,383 +0,0 @@
1
- import bpy
2
- import sys, os
3
- from math import radians
4
- import mathutils
5
- import bmesh
6
-
7
- print(sys.exec_prefix)
8
- from tqdm import tqdm
9
- import numpy as np
10
-
11
- ##################################################
12
- # Globals
13
- ##################################################
14
-
15
- views = 120
16
-
17
- render = 'eevee'
18
- cycles_gpu = False
19
-
20
- quality_preview = False
21
- samples_preview = 16
22
- samples_final = 256
23
-
24
- resolution_x = 512
25
- resolution_y = 512
26
-
27
- shadows = False
28
-
29
- # diffuse_color = (57.0/255.0, 108.0/255.0, 189.0/255.0, 1.0)
30
- # diffuse_color = (18/255., 139/255., 142/255.,1) #correct
31
- # diffuse_color = (251/255., 60/255., 60/255.,1) #wrong
32
-
33
- smooth = False
34
-
35
- wireframe = False
36
- line_thickness = 0.1
37
- quads = False
38
-
39
- object_transparent = False
40
- mouth_transparent = False
41
-
42
- compositor_background_image = False
43
- compositor_image_scale = 1.0
44
- compositor_alpha = 0.7
45
-
46
- ##################################################
47
- # Helper functions
48
- ##################################################
49
-
50
-
51
- def blender_print(*args, **kwargs):
52
- print(*args, **kwargs, file=sys.stderr)
53
-
54
-
55
- def using_app():
56
- ''' Returns if script is running through Blender application (GUI or background processing)'''
57
- return (not sys.argv[0].endswith('.py'))
58
-
59
-
60
- def setup_diffuse_transparent_material(target, color, object_transparent, backface_transparent):
61
- ''' Sets up diffuse/transparent material with backface culling in cycles'''
62
-
63
- mat = target.active_material
64
- if mat is None:
65
- # Create material
66
- mat = bpy.data.materials.new(name='Material')
67
- target.data.materials.append(mat)
68
-
69
- mat.use_nodes = True
70
- nodes = mat.node_tree.nodes
71
- for node in nodes:
72
- nodes.remove(node)
73
-
74
- node_geometry = nodes.new('ShaderNodeNewGeometry')
75
-
76
- node_diffuse = nodes.new('ShaderNodeBsdfDiffuse')
77
- node_diffuse.inputs[0].default_value = color
78
-
79
- node_transparent = nodes.new('ShaderNodeBsdfTransparent')
80
- node_transparent.inputs[0].default_value = (1.0, 1.0, 1.0, 1.0)
81
-
82
- node_emission = nodes.new('ShaderNodeEmission')
83
- node_emission.inputs[0].default_value = (0.0, 0.0, 0.0, 1.0)
84
-
85
- node_mix = nodes.new(type='ShaderNodeMixShader')
86
- if object_transparent:
87
- node_mix.inputs[0].default_value = 1.0
88
- else:
89
- node_mix.inputs[0].default_value = 0.0
90
-
91
- node_mix_mouth = nodes.new(type='ShaderNodeMixShader')
92
- if object_transparent or backface_transparent:
93
- node_mix_mouth.inputs[0].default_value = 1.0
94
- else:
95
- node_mix_mouth.inputs[0].default_value = 0.0
96
-
97
- node_mix_backface = nodes.new(type='ShaderNodeMixShader')
98
-
99
- node_output = nodes.new(type='ShaderNodeOutputMaterial')
100
-
101
- links = mat.node_tree.links
102
-
103
- links.new(node_geometry.outputs[6], node_mix_backface.inputs[0])
104
-
105
- links.new(node_diffuse.outputs[0], node_mix.inputs[1])
106
- links.new(node_transparent.outputs[0], node_mix.inputs[2])
107
- links.new(node_mix.outputs[0], node_mix_backface.inputs[1])
108
-
109
- links.new(node_emission.outputs[0], node_mix_mouth.inputs[1])
110
- links.new(node_transparent.outputs[0], node_mix_mouth.inputs[2])
111
- links.new(node_mix_mouth.outputs[0], node_mix_backface.inputs[2])
112
-
113
- links.new(node_mix_backface.outputs[0], node_output.inputs[0])
114
- return
115
-
116
-
117
- ##################################################
118
-
119
-
120
- def setup_scene():
121
- global render
122
- global cycles_gpu
123
- global quality_preview
124
- global resolution_x
125
- global resolution_y
126
- global shadows
127
- global wireframe
128
- global line_thickness
129
- global compositor_background_image
130
-
131
- # Remove default cube
132
- if 'Cube' in bpy.data.objects:
133
- bpy.data.objects['Cube'].select_set(True)
134
- bpy.ops.object.delete()
135
-
136
- scene = bpy.data.scenes['Scene']
137
-
138
- # Setup render engine
139
- if render == 'cycles':
140
- scene.render.engine = 'CYCLES'
141
- else:
142
- scene.render.engine = 'BLENDER_EEVEE'
143
-
144
- scene.render.resolution_x = resolution_x
145
- scene.render.resolution_y = resolution_y
146
- scene.render.resolution_percentage = 100
147
- scene.render.film_transparent = True
148
- if quality_preview:
149
- scene.cycles.samples = samples_preview
150
- else:
151
- scene.cycles.samples = samples_final
152
-
153
- # Setup Cycles CUDA GPU acceleration if requested
154
- if render == 'cycles':
155
- if cycles_gpu:
156
- print('Activating GPU acceleration')
157
- bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
158
-
159
- if bpy.app.version[0] >= 3:
160
- cuda_devices = bpy.context.preferences.addons[
161
- 'cycles'].preferences.get_devices_for_type(compute_device_type='CUDA')
162
- else:
163
- (cuda_devices, opencl_devices
164
- ) = bpy.context.preferences.addons['cycles'].preferences.get_devices()
165
-
166
- if (len(cuda_devices) < 1):
167
- print('ERROR: CUDA GPU acceleration not available')
168
- sys.exit(1)
169
-
170
- for cuda_device in cuda_devices:
171
- if cuda_device.type == 'CUDA':
172
- cuda_device.use = True
173
- print('Using CUDA device: ' + str(cuda_device.name))
174
- else:
175
- cuda_device.use = False
176
- print('Igoring CUDA device: ' + str(cuda_device.name))
177
-
178
- scene.cycles.device = 'GPU'
179
- if bpy.app.version[0] < 3:
180
- scene.render.tile_x = 256
181
- scene.render.tile_y = 256
182
- else:
183
- scene.cycles.device = 'CPU'
184
- if bpy.app.version[0] < 3:
185
- scene.render.tile_x = 64
186
- scene.render.tile_y = 64
187
-
188
- # Disable Blender 3 denoiser to properly measure Cycles render speed
189
- if bpy.app.version[0] >= 3:
190
- scene.cycles.use_denoising = False
191
-
192
- # Setup camera
193
- camera = bpy.data.objects['Camera']
194
- camera.location = (0.0, -3, 1.8)
195
- camera.rotation_euler = (radians(74), 0.0, 0)
196
- bpy.data.cameras['Camera'].lens = 55
197
-
198
- # Setup light
199
-
200
- # Setup lights
201
- light = bpy.data.objects['Light']
202
- light.location = (-2, -3.0, 0.0)
203
- light.rotation_euler = (radians(90.0), 0.0, 0.0)
204
- bpy.data.lights['Light'].type = 'POINT'
205
- bpy.data.lights['Light'].energy = 2
206
- light.data.cycles.cast_shadow = False
207
-
208
- if 'Sun' not in bpy.data.objects:
209
- bpy.ops.object.light_add(type='SUN')
210
- light_sun = bpy.context.active_object
211
- light_sun.location = (0.0, -3, 0.0)
212
- light_sun.rotation_euler = (radians(45.0), 0.0, radians(30))
213
- bpy.data.lights['Sun'].energy = 2
214
- light_sun.data.cycles.cast_shadow = shadows
215
- else:
216
- light_sun = bpy.data.objects['Sun']
217
-
218
- if shadows:
219
- # Setup shadow catcher
220
- bpy.ops.mesh.primitive_plane_add()
221
- plane = bpy.context.active_object
222
- plane.scale = (5.0, 5.0, 1)
223
-
224
- plane.cycles.is_shadow_catcher = True
225
-
226
- # Exclude plane from diffuse cycles contribution to avoid bright pixel noise in body rendering
227
- # plane.cycles_visibility.diffuse = False
228
-
229
- if wireframe:
230
- # Unmark freestyle edges
231
- bpy.ops.object.mode_set(mode='EDIT')
232
- bpy.ops.mesh.mark_freestyle_edge(clear=True)
233
- bpy.ops.object.mode_set(mode='OBJECT')
234
-
235
- # Setup freestyle mode for wireframe overlay rendering
236
- if wireframe:
237
- scene.render.use_freestyle = True
238
- scene.render.line_thickness = line_thickness
239
- bpy.context.view_layer.freestyle_settings.linesets[0].select_edge_mark = True
240
-
241
- # Disable border edges so that we don't see contour of shadow catcher plane
242
- bpy.context.view_layer.freestyle_settings.linesets[0].select_border = False
243
- else:
244
- scene.render.use_freestyle = False
245
-
246
- if compositor_background_image:
247
- # Setup compositing when using background image
248
- setup_compositing()
249
- else:
250
- # Output transparent image when no background is used
251
- scene.render.image_settings.color_mode = 'RGBA'
252
-
253
-
254
- ##################################################
255
-
256
-
257
- def setup_compositing():
258
-
259
- global compositor_image_scale
260
- global compositor_alpha
261
-
262
- # Node editor compositing setup
263
- bpy.context.scene.use_nodes = True
264
- tree = bpy.context.scene.node_tree
265
-
266
- # Create input image node
267
- image_node = tree.nodes.new(type='CompositorNodeImage')
268
-
269
- scale_node = tree.nodes.new(type='CompositorNodeScale')
270
- scale_node.inputs[1].default_value = compositor_image_scale
271
- scale_node.inputs[2].default_value = compositor_image_scale
272
-
273
- blend_node = tree.nodes.new(type='CompositorNodeAlphaOver')
274
- blend_node.inputs[0].default_value = compositor_alpha
275
-
276
- # Link nodes
277
- links = tree.links
278
- links.new(image_node.outputs[0], scale_node.inputs[0])
279
-
280
- links.new(scale_node.outputs[0], blend_node.inputs[1])
281
- links.new(tree.nodes['Render Layers'].outputs[0], blend_node.inputs[2])
282
-
283
- links.new(blend_node.outputs[0], tree.nodes['Composite'].inputs[0])
284
-
285
-
286
- def render_file(input_file, input_dir, output_file, output_dir, yaw, correct):
287
- '''Render image of given model file'''
288
- global smooth
289
- global object_transparent
290
- global mouth_transparent
291
- global compositor_background_image
292
- global quads
293
-
294
- path = input_dir + input_file
295
-
296
- # Import object into scene
297
- bpy.ops.import_scene.obj(filepath=path)
298
- object = bpy.context.selected_objects[0]
299
-
300
- object.rotation_euler = (radians(90.0), 0.0, radians(yaw))
301
- z_bottom = np.min(np.array([vert.co for vert in object.data.vertices])[:, 1])
302
- # z_top = np.max(np.array([vert.co for vert in object.data.vertices])[:,1])
303
- # blender_print(radians(90.0), z_bottom, z_top)
304
- object.location -= mathutils.Vector((0.0, 0.0, z_bottom))
305
-
306
- if quads:
307
- bpy.context.view_layer.objects.active = object
308
- bpy.ops.object.mode_set(mode='EDIT')
309
- bpy.ops.mesh.tris_convert_to_quads()
310
- bpy.ops.object.mode_set(mode='OBJECT')
311
-
312
- if smooth:
313
- bpy.ops.object.shade_smooth()
314
-
315
- # Mark freestyle edges
316
- bpy.context.view_layer.objects.active = object
317
- bpy.ops.object.mode_set(mode='EDIT')
318
- bpy.ops.mesh.mark_freestyle_edge(clear=False)
319
- bpy.ops.object.mode_set(mode='OBJECT')
320
-
321
- if correct:
322
- diffuse_color = (18 / 255., 139 / 255., 142 / 255., 1) #correct
323
- else:
324
- diffuse_color = (251 / 255., 60 / 255., 60 / 255., 1) #wrong
325
-
326
- setup_diffuse_transparent_material(object, diffuse_color, object_transparent, mouth_transparent)
327
-
328
- if compositor_background_image:
329
- # Set background image
330
- image_path = input_dir + input_file.replace('.obj', '_original.png')
331
- bpy.context.scene.node_tree.nodes['Image'].image = bpy.data.images.load(image_path)
332
-
333
- # Render
334
- bpy.context.scene.render.filepath = os.path.join(output_dir, output_file)
335
-
336
- # Silence console output of bpy.ops.render.render by redirecting stdout to file
337
- # Note: Does not actually write the output to file (Windows 7)
338
- sys.stdout.flush()
339
- old = os.dup(1)
340
- os.close(1)
341
- os.open('blender_render.log', os.O_WRONLY | os.O_CREAT)
342
-
343
- # Render
344
- bpy.ops.render.render(write_still=True)
345
-
346
- # Remove temporary output redirection
347
- # sys.stdout.flush()
348
- # os.close(1)
349
- # os.dup(old)
350
- # os.close(old)
351
-
352
- # Delete last selected object from scene
353
- object.select_set(True)
354
- bpy.ops.object.delete()
355
-
356
-
357
- def process_file(input_file, input_dir, output_file, output_dir, correct=True):
358
- global views
359
- global quality_preview
360
-
361
- if not input_file.endswith('.obj'):
362
- print('ERROR: Invalid input: ' + input_file)
363
- return
364
-
365
- print('Processing: ' + input_file)
366
- if output_file == '':
367
- output_file = input_file[:-4]
368
-
369
- if quality_preview:
370
- output_file = output_file.replace('.png', '-preview.png')
371
-
372
- angle = 360.0 / views
373
- pbar = tqdm(range(0, views))
374
- for view in pbar:
375
- pbar.set_description(f"{os.path.basename(output_file)} | View:{str(view)}")
376
- yaw = view * angle
377
- output_file_view = f"{output_file}/{view:03d}.png"
378
- if not os.path.exists(os.path.join(output_dir, output_file_view)):
379
- render_file(input_file, input_dir, output_file_view, output_dir, yaw, correct)
380
-
381
- cmd = "ffmpeg -loglevel quiet -r 30 -f lavfi -i color=c=white:s=512x512 -i " + os.path.join(output_dir, output_file, '%3d.png') + \
382
- " -shortest -filter_complex \"[0:v][1:v]overlay=shortest=1,format=yuv420p[out]\" -map \"[out]\" -y " + output_dir+"/"+output_file+".mp4"
383
- os.system(cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lib/common/cloth_extraction.py CHANGED
@@ -1,10 +1,11 @@
1
- import numpy as np
2
  import json
3
  import os
4
- import itertools
 
 
5
  import trimesh
6
  from matplotlib.path import Path
7
- from collections import Counter
8
  from sklearn.neighbors import KNeighborsClassifier
9
 
10
 
@@ -36,13 +37,11 @@ def load_segmentation(path, shape):
36
  xy = np.vstack((x, y)).T
37
  coordinates.append(xy)
38
 
39
- segmentations.append(
40
- {
41
- "type": val["category_name"],
42
- "type_id": val["category_id"],
43
- "coordinates": coordinates,
44
- }
45
- )
46
 
47
  return segmentations
48
 
 
1
+ import itertools
2
  import json
3
  import os
4
+ from collections import Counter
5
+
6
+ import numpy as np
7
  import trimesh
8
  from matplotlib.path import Path
 
9
  from sklearn.neighbors import KNeighborsClassifier
10
 
11
 
 
37
  xy = np.vstack((x, y)).T
38
  coordinates.append(xy)
39
 
40
+ segmentations.append({
41
+ "type": val["category_name"],
42
+ "type_id": val["category_id"],
43
+ "coordinates": coordinates,
44
+ })
 
 
45
 
46
  return segmentations
47
 
lib/common/config.py CHANGED
@@ -14,9 +14,10 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from yacs.config import CfgNode as CN
18
  import os
19
 
 
 
20
  _C = CN(new_allowed=True)
21
 
22
  # needed by trainer
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import os
18
 
19
+ from yacs.config import CfgNode as CN
20
+
21
  _C = CN(new_allowed=True)
22
 
23
  # needed by trainer
lib/common/imutils.py CHANGED
@@ -1,17 +1,18 @@
1
  import os
2
- os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
 
3
  import cv2
4
  import mediapipe as mp
5
- import torch
6
  import numpy as np
 
7
  import torch.nn.functional as F
 
8
  from PIL import Image
9
- from lib.pymafx.core import constants
10
-
11
  from rembg import remove
12
  from rembg.session_factory import new_session
13
  from torchvision import transforms
14
- from kornia.geometry.transform import get_affine_matrix2d, warp_affine
 
15
 
16
 
17
  def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
@@ -40,13 +41,14 @@ def get_affine_matrix_box(boxes, w2, h2):
40
  # boxes [left, top, right, bottom]
41
  width = boxes[:, 2] - boxes[:, 0] #(N,)
42
  height = boxes[:, 3] - boxes[:, 1] #(N,)
43
- center = torch.tensor(
44
- [(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]
45
- ).T #(N,2)
46
  scale = torch.min(torch.tensor([w2 / width, h2 / height]),
47
  dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2)
48
- transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1) #(N,2)
49
- M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.,]*transl.shape[0]))
 
 
50
 
51
  return M
52
 
@@ -54,12 +56,12 @@ def get_affine_matrix_box(boxes, w2, h2):
54
  def load_img(img_file):
55
 
56
  if img_file.endswith("exr"):
57
- img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
58
- else :
59
  img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
60
 
61
  # considering non 8-bit image
62
- if img.dtype != np.uint8 :
63
  img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
64
 
65
  if len(img.shape) == 2:
@@ -112,8 +114,8 @@ def get_pymafx(image, landmarks):
112
  # image [3,512,512]
113
 
114
  item = {
115
- 'img_body':
116
- F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]
117
  }
118
 
119
  for part in ['lhand', 'rhand', 'face']:
@@ -211,11 +213,8 @@ def process_image(img_file, hps_type, single, input_res, detector):
211
  img_pymafx_lst = []
212
 
213
  uncrop_param = {
214
- "ori_shape": [in_height, in_width],
215
- "box_shape": [input_res, input_res],
216
- "square_shape": [tgt_res, tgt_res],
217
- "M_square": M_square,
218
- "M_crop": M_crop
219
  }
220
 
221
  for idx in range(len(boxes)):
@@ -226,11 +225,11 @@ def process_image(img_file, hps_type, single, input_res, detector):
226
  else:
227
  mask_detection = masks[0] * 0.
228
 
229
- img_square_rgba = torch.cat(
230
- [img_square.squeeze(0).permute(1, 2, 0),
231
- torch.tensor(mask_detection < 0.4) * 255],
232
- dim=2
233
- )
234
 
235
  img_crop = warp_affine(
236
  img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2),
 
1
  import os
2
+
3
+ os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
4
  import cv2
5
  import mediapipe as mp
 
6
  import numpy as np
7
+ import torch
8
  import torch.nn.functional as F
9
+ from kornia.geometry.transform import get_affine_matrix2d, warp_affine
10
  from PIL import Image
 
 
11
  from rembg import remove
12
  from rembg.session_factory import new_session
13
  from torchvision import transforms
14
+
15
+ from lib.pymafx.core import constants
16
 
17
 
18
  def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
 
41
  # boxes [left, top, right, bottom]
42
  width = boxes[:, 2] - boxes[:, 0] #(N,)
43
  height = boxes[:, 3] - boxes[:, 1] #(N,)
44
+ center = torch.tensor([(boxes[:, 0] + boxes[:, 2]) / 2.0,
45
+ (boxes[:, 1] + boxes[:, 3]) / 2.0]).T #(N,2)
 
46
  scale = torch.min(torch.tensor([w2 / width, h2 / height]),
47
  dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2)
48
+ transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1) #(N,2)
49
+ M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([
50
+ 0.,
51
+ ] * transl.shape[0]))
52
 
53
  return M
54
 
 
56
  def load_img(img_file):
57
 
58
  if img_file.endswith("exr"):
59
+ img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
60
+ else:
61
  img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
62
 
63
  # considering non 8-bit image
64
+ if img.dtype != np.uint8:
65
  img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
66
 
67
  if len(img.shape) == 2:
 
114
  # image [3,512,512]
115
 
116
  item = {
117
+ 'img_body': F.interpolate(image.unsqueeze(0), size=224, mode='bicubic',
118
+ align_corners=True)[0]
119
  }
120
 
121
  for part in ['lhand', 'rhand', 'face']:
 
213
  img_pymafx_lst = []
214
 
215
  uncrop_param = {
216
+ "ori_shape": [in_height, in_width], "box_shape": [input_res, input_res], "square_shape":
217
+ [tgt_res, tgt_res], "M_square": M_square, "M_crop": M_crop
 
 
 
218
  }
219
 
220
  for idx in range(len(boxes)):
 
225
  else:
226
  mask_detection = masks[0] * 0.
227
 
228
+ img_square_rgba = torch.cat([
229
+ img_square.squeeze(0).permute(1, 2, 0),
230
+ torch.tensor(mask_detection < 0.4) * 255
231
+ ],
232
+ dim=2)
233
 
234
  img_crop = warp_affine(
235
  img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2),
lib/common/libmesh/inside_mesh.py CHANGED
@@ -1,4 +1,5 @@
1
  import numpy as np
 
2
  from .triangle_hash import TriangleHash as _TriangleHash
3
 
4
 
@@ -147,8 +148,6 @@ class TriangleIntersector2d:
147
  v = (-A[:, 1, 0] * y[:, 0] + A[:, 0, 0] * y[:, 1]) * s_detA
148
 
149
  sum_uv = u + v
150
- contains[mask] = (
151
- (0 < u) & (u < abs_detA) & (0 < v) & (v < abs_detA) & (0 < sum_uv) &
152
- (sum_uv < abs_detA)
153
- )
154
  return contains
 
1
  import numpy as np
2
+
3
  from .triangle_hash import TriangleHash as _TriangleHash
4
 
5
 
 
148
  v = (-A[:, 1, 0] * y[:, 0] + A[:, 0, 0] * y[:, 1]) * s_detA
149
 
150
  sum_uv = u + v
151
+ contains[mask] = ((0 < u) & (u < abs_detA) & (0 < v) & (v < abs_detA) & (0 < sum_uv) &
152
+ (sum_uv < abs_detA))
 
 
153
  return contains
lib/common/libmesh/setup.py CHANGED
@@ -1,5 +1,5 @@
 
1
  from setuptools import setup
2
  from Cython.Build import cythonize
3
- import numpy
4
 
5
  setup(name='libmesh', ext_modules=cythonize("*.pyx"), include_dirs=[numpy.get_include()])
 
1
+ import numpy
2
  from setuptools import setup
3
  from Cython.Build import cythonize
 
4
 
5
  setup(name='libmesh', ext_modules=cythonize("*.pyx"), include_dirs=[numpy.get_include()])
lib/common/libmesh/triangle_hash.cpp CHANGED
@@ -720,12 +720,12 @@ static CYTHON_INLINE float __PYX_NAN() {
720
 
721
  /* NumPy API declarations from "numpy/__init__.pxd" */
722
 
 
723
  #include "ios"
724
  #include "new"
725
  #include "stdexcept"
726
  #include "typeinfo"
727
  #include <vector>
728
- #include <math.h>
729
  #include "pythread.h"
730
  #include <stdlib.h>
731
  #include "pystate.h"
@@ -1330,8 +1330,8 @@ typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
1330
  */
1331
  typedef npy_cdouble __pyx_t_5numpy_complex_t;
1332
 
1333
- /* "triangle_hash.pyx":9
1334
- * from libc.math cimport floor, ceil
1335
  *
1336
  * cdef class TriangleHash: # <<<<<<<<<<<<<<
1337
  * cdef vector[vector[int]] spatial_hash
@@ -1423,8 +1423,8 @@ struct __pyx_memoryviewslice_obj {
1423
 
1424
 
1425
 
1426
- /* "triangle_hash.pyx":9
1427
- * from libc.math cimport floor, ceil
1428
  *
1429
  * cdef class TriangleHash: # <<<<<<<<<<<<<<
1430
  * cdef vector[vector[int]] spatial_hash
@@ -2279,6 +2279,10 @@ static PyObject *__pyx_memoryview_assign_item_from_object(struct __pyx_memoryvie
2279
  static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/
2280
  static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/
2281
 
 
 
 
 
2282
  /* Module declarations from 'cpython.buffer' */
2283
 
2284
  /* Module declarations from 'libc.string' */
@@ -2317,14 +2321,10 @@ static PyTypeObject *__pyx_ptype_5numpy_flexible = 0;
2317
  static PyTypeObject *__pyx_ptype_5numpy_character = 0;
2318
  static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0;
2319
 
2320
- /* Module declarations from 'cython.view' */
2321
-
2322
- /* Module declarations from 'cython' */
2323
 
2324
  /* Module declarations from 'libcpp.vector' */
2325
 
2326
- /* Module declarations from 'libc.math' */
2327
-
2328
  /* Module declarations from 'triangle_hash' */
2329
  static PyTypeObject *__pyx_ptype_13triangle_hash_TriangleHash = 0;
2330
  static PyTypeObject *__pyx_array_type = 0;
@@ -2667,7 +2667,7 @@ static PyObject *__pyx_tuple__28;
2667
  static PyObject *__pyx_codeobj__29;
2668
  /* Late includes */
2669
 
2670
- /* "triangle_hash.pyx":13
2671
  * cdef int resolution
2672
  *
2673
  * def __cinit__(self, double[:, :, :] triangles, int resolution): # <<<<<<<<<<<<<<
@@ -2709,11 +2709,11 @@ static int __pyx_pw_13triangle_hash_12TriangleHash_1__cinit__(PyObject *__pyx_v_
2709
  case 1:
2710
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_resolution)) != 0)) kw_args--;
2711
  else {
2712
- __Pyx_RaiseArgtupleInvalid("__cinit__", 1, 2, 2, 1); __PYX_ERR(0, 13, __pyx_L3_error)
2713
  }
2714
  }
2715
  if (unlikely(kw_args > 0)) {
2716
- if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(0, 13, __pyx_L3_error)
2717
  }
2718
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2719
  goto __pyx_L5_argtuple_error;
@@ -2721,12 +2721,12 @@ static int __pyx_pw_13triangle_hash_12TriangleHash_1__cinit__(PyObject *__pyx_v_
2721
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2722
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2723
  }
2724
- __pyx_v_triangles = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_triangles.memview)) __PYX_ERR(0, 13, __pyx_L3_error)
2725
- __pyx_v_resolution = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_resolution == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 13, __pyx_L3_error)
2726
  }
2727
  goto __pyx_L4_argument_unpacking_done;
2728
  __pyx_L5_argtuple_error:;
2729
- __Pyx_RaiseArgtupleInvalid("__cinit__", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 13, __pyx_L3_error)
2730
  __pyx_L3_error:;
2731
  __Pyx_AddTraceback("triangle_hash.TriangleHash.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename);
2732
  __Pyx_RefNannyFinishContext();
@@ -2747,7 +2747,7 @@ static int __pyx_pf_13triangle_hash_12TriangleHash___cinit__(struct __pyx_obj_13
2747
  int __pyx_clineno = 0;
2748
  __Pyx_RefNannySetupContext("__cinit__", 0);
2749
 
2750
- /* "triangle_hash.pyx":14
2751
  *
2752
  * def __cinit__(self, double[:, :, :] triangles, int resolution):
2753
  * self.spatial_hash.resize(resolution * resolution) # <<<<<<<<<<<<<<
@@ -2758,10 +2758,10 @@ static int __pyx_pf_13triangle_hash_12TriangleHash___cinit__(struct __pyx_obj_13
2758
  __pyx_v_self->spatial_hash.resize((__pyx_v_resolution * __pyx_v_resolution));
2759
  } catch(...) {
2760
  __Pyx_CppExn2PyErr();
2761
- __PYX_ERR(0, 14, __pyx_L1_error)
2762
  }
2763
 
2764
- /* "triangle_hash.pyx":15
2765
  * def __cinit__(self, double[:, :, :] triangles, int resolution):
2766
  * self.spatial_hash.resize(resolution * resolution)
2767
  * self.resolution = resolution # <<<<<<<<<<<<<<
@@ -2770,7 +2770,7 @@ static int __pyx_pf_13triangle_hash_12TriangleHash___cinit__(struct __pyx_obj_13
2770
  */
2771
  __pyx_v_self->resolution = __pyx_v_resolution;
2772
 
2773
- /* "triangle_hash.pyx":16
2774
  * self.spatial_hash.resize(resolution * resolution)
2775
  * self.resolution = resolution
2776
  * self._build_hash(triangles) # <<<<<<<<<<<<<<
@@ -2779,7 +2779,7 @@ static int __pyx_pf_13triangle_hash_12TriangleHash___cinit__(struct __pyx_obj_13
2779
  */
2780
  (void)(((struct __pyx_vtabstruct_13triangle_hash_TriangleHash *)__pyx_v_self->__pyx_vtab)->_build_hash(__pyx_v_self, __pyx_v_triangles));
2781
 
2782
- /* "triangle_hash.pyx":13
2783
  * cdef int resolution
2784
  *
2785
  * def __cinit__(self, double[:, :, :] triangles, int resolution): # <<<<<<<<<<<<<<
@@ -2799,7 +2799,7 @@ static int __pyx_pf_13triangle_hash_12TriangleHash___cinit__(struct __pyx_obj_13
2799
  return __pyx_r;
2800
  }
2801
 
2802
- /* "triangle_hash.pyx":20
2803
  * @cython.boundscheck(False) # Deactivate bounds checking
2804
  * @cython.wraparound(False) # Deactivate negative indexing.
2805
  * cdef int _build_hash(self, double[:, :, :] triangles): # <<<<<<<<<<<<<<
@@ -2839,7 +2839,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2839
  int __pyx_clineno = 0;
2840
  __Pyx_RefNannySetupContext("_build_hash", 0);
2841
 
2842
- /* "triangle_hash.pyx":21
2843
  * @cython.wraparound(False) # Deactivate negative indexing.
2844
  * cdef int _build_hash(self, double[:, :, :] triangles):
2845
  * assert(triangles.shape[1] == 3) # <<<<<<<<<<<<<<
@@ -2850,12 +2850,12 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2850
  if (unlikely(!Py_OptimizeFlag)) {
2851
  if (unlikely(!(((__pyx_v_triangles.shape[1]) == 3) != 0))) {
2852
  PyErr_SetNone(PyExc_AssertionError);
2853
- __PYX_ERR(0, 21, __pyx_L1_error)
2854
  }
2855
  }
2856
  #endif
2857
 
2858
- /* "triangle_hash.pyx":22
2859
  * cdef int _build_hash(self, double[:, :, :] triangles):
2860
  * assert(triangles.shape[1] == 3)
2861
  * assert(triangles.shape[2] == 2) # <<<<<<<<<<<<<<
@@ -2866,12 +2866,12 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2866
  if (unlikely(!Py_OptimizeFlag)) {
2867
  if (unlikely(!(((__pyx_v_triangles.shape[2]) == 2) != 0))) {
2868
  PyErr_SetNone(PyExc_AssertionError);
2869
- __PYX_ERR(0, 22, __pyx_L1_error)
2870
  }
2871
  }
2872
  #endif
2873
 
2874
- /* "triangle_hash.pyx":24
2875
  * assert(triangles.shape[2] == 2)
2876
  *
2877
  * cdef int n_tri = triangles.shape[0] # <<<<<<<<<<<<<<
@@ -2880,7 +2880,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2880
  */
2881
  __pyx_v_n_tri = (__pyx_v_triangles.shape[0]);
2882
 
2883
- /* "triangle_hash.pyx":31
2884
  * cdef int spatial_idx
2885
  *
2886
  * for i_tri in range(n_tri): # <<<<<<<<<<<<<<
@@ -2892,7 +2892,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2892
  for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) {
2893
  __pyx_v_i_tri = __pyx_t_3;
2894
 
2895
- /* "triangle_hash.pyx":33
2896
  * for i_tri in range(n_tri):
2897
  * # Compute bounding box
2898
  * for j in range(2): # <<<<<<<<<<<<<<
@@ -2902,7 +2902,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2902
  for (__pyx_t_4 = 0; __pyx_t_4 < 2; __pyx_t_4+=1) {
2903
  __pyx_v_j = __pyx_t_4;
2904
 
2905
- /* "triangle_hash.pyx":35
2906
  * for j in range(2):
2907
  * bbox_min[j] = <int> min(
2908
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] # <<<<<<<<<<<<<<
@@ -2933,7 +2933,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2933
  __pyx_t_11 = __pyx_t_10;
2934
  }
2935
 
2936
- /* "triangle_hash.pyx":34
2937
  * # Compute bounding box
2938
  * for j in range(2):
2939
  * bbox_min[j] = <int> min( # <<<<<<<<<<<<<<
@@ -2942,7 +2942,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2942
  */
2943
  (__pyx_v_bbox_min[__pyx_v_j]) = ((int)__pyx_t_11);
2944
 
2945
- /* "triangle_hash.pyx":38
2946
  * )
2947
  * bbox_max[j] = <int> max(
2948
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] # <<<<<<<<<<<<<<
@@ -2973,7 +2973,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2973
  __pyx_t_10 = __pyx_t_9;
2974
  }
2975
 
2976
- /* "triangle_hash.pyx":37
2977
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j]
2978
  * )
2979
  * bbox_max[j] = <int> max( # <<<<<<<<<<<<<<
@@ -2982,7 +2982,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
2982
  */
2983
  (__pyx_v_bbox_max[__pyx_v_j]) = ((int)__pyx_t_10);
2984
 
2985
- /* "triangle_hash.pyx":40
2986
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j]
2987
  * )
2988
  * bbox_min[j] = min(max(bbox_min[j], 0), self.resolution - 1) # <<<<<<<<<<<<<<
@@ -3005,7 +3005,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3005
  }
3006
  (__pyx_v_bbox_min[__pyx_v_j]) = __pyx_t_15;
3007
 
3008
- /* "triangle_hash.pyx":41
3009
  * )
3010
  * bbox_min[j] = min(max(bbox_min[j], 0), self.resolution - 1)
3011
  * bbox_max[j] = min(max(bbox_max[j], 0), self.resolution - 1) # <<<<<<<<<<<<<<
@@ -3029,7 +3029,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3029
  (__pyx_v_bbox_max[__pyx_v_j]) = __pyx_t_13;
3030
  }
3031
 
3032
- /* "triangle_hash.pyx":44
3033
  *
3034
  * # Find all voxels where bounding box intersects
3035
  * for x in range(bbox_min[0], bbox_max[0] + 1): # <<<<<<<<<<<<<<
@@ -3041,7 +3041,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3041
  for (__pyx_t_4 = (__pyx_v_bbox_min[0]); __pyx_t_4 < __pyx_t_15; __pyx_t_4+=1) {
3042
  __pyx_v_x = __pyx_t_4;
3043
 
3044
- /* "triangle_hash.pyx":45
3045
  * # Find all voxels where bounding box intersects
3046
  * for x in range(bbox_min[0], bbox_max[0] + 1):
3047
  * for y in range(bbox_min[1], bbox_max[1] + 1): # <<<<<<<<<<<<<<
@@ -3053,7 +3053,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3053
  for (__pyx_t_14 = (__pyx_v_bbox_min[1]); __pyx_t_14 < __pyx_t_16; __pyx_t_14+=1) {
3054
  __pyx_v_y = __pyx_t_14;
3055
 
3056
- /* "triangle_hash.pyx":46
3057
  * for x in range(bbox_min[0], bbox_max[0] + 1):
3058
  * for y in range(bbox_min[1], bbox_max[1] + 1):
3059
  * spatial_idx = self.resolution * x + y # <<<<<<<<<<<<<<
@@ -3062,7 +3062,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3062
  */
3063
  __pyx_v_spatial_idx = ((__pyx_v_self->resolution * __pyx_v_x) + __pyx_v_y);
3064
 
3065
- /* "triangle_hash.pyx":47
3066
  * for y in range(bbox_min[1], bbox_max[1] + 1):
3067
  * spatial_idx = self.resolution * x + y
3068
  * self.spatial_hash[spatial_idx].push_back(i_tri) # <<<<<<<<<<<<<<
@@ -3073,13 +3073,13 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3073
  (__pyx_v_self->spatial_hash[__pyx_v_spatial_idx]).push_back(__pyx_v_i_tri);
3074
  } catch(...) {
3075
  __Pyx_CppExn2PyErr();
3076
- __PYX_ERR(0, 47, __pyx_L1_error)
3077
  }
3078
  }
3079
  }
3080
  }
3081
 
3082
- /* "triangle_hash.pyx":20
3083
  * @cython.boundscheck(False) # Deactivate bounds checking
3084
  * @cython.wraparound(False) # Deactivate negative indexing.
3085
  * cdef int _build_hash(self, double[:, :, :] triangles): # <<<<<<<<<<<<<<
@@ -3098,7 +3098,7 @@ static int __pyx_f_13triangle_hash_12TriangleHash__build_hash(struct __pyx_obj_1
3098
  return __pyx_r;
3099
  }
3100
 
3101
- /* "triangle_hash.pyx":51
3102
  * @cython.boundscheck(False) # Deactivate bounds checking
3103
  * @cython.wraparound(False) # Deactivate negative indexing.
3104
  * cpdef query(self, double[:, :] points): # <<<<<<<<<<<<<<
@@ -3155,12 +3155,12 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3155
  if (unlikely(!__Pyx_object_dict_version_matches(((PyObject *)__pyx_v_self), __pyx_tp_dict_version, __pyx_obj_dict_version))) {
3156
  PY_UINT64_T __pyx_type_dict_guard = __Pyx_get_tp_dict_version(((PyObject *)__pyx_v_self));
3157
  #endif
3158
- __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_query); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 51, __pyx_L1_error)
3159
  __Pyx_GOTREF(__pyx_t_1);
3160
  if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)(void*)__pyx_pw_13triangle_hash_12TriangleHash_3query)) {
3161
  __Pyx_XDECREF(__pyx_r);
3162
- if (unlikely(!__pyx_v_points.memview)) { __Pyx_RaiseUnboundLocalError("points"); __PYX_ERR(0, 51, __pyx_L1_error) }
3163
- __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_points, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 51, __pyx_L1_error)
3164
  __Pyx_GOTREF(__pyx_t_3);
3165
  __Pyx_INCREF(__pyx_t_1);
3166
  __pyx_t_4 = __pyx_t_1; __pyx_t_5 = NULL;
@@ -3176,7 +3176,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3176
  __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3);
3177
  __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
3178
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3179
- if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 51, __pyx_L1_error)
3180
  __Pyx_GOTREF(__pyx_t_2);
3181
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
3182
  __pyx_r = __pyx_t_2;
@@ -3197,7 +3197,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3197
  #endif
3198
  }
3199
 
3200
- /* "triangle_hash.pyx":52
3201
  * @cython.wraparound(False) # Deactivate negative indexing.
3202
  * cpdef query(self, double[:, :] points):
3203
  * assert(points.shape[1] == 2) # <<<<<<<<<<<<<<
@@ -3208,12 +3208,12 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3208
  if (unlikely(!Py_OptimizeFlag)) {
3209
  if (unlikely(!(((__pyx_v_points.shape[1]) == 2) != 0))) {
3210
  PyErr_SetNone(PyExc_AssertionError);
3211
- __PYX_ERR(0, 52, __pyx_L1_error)
3212
  }
3213
  }
3214
  #endif
3215
 
3216
- /* "triangle_hash.pyx":53
3217
  * cpdef query(self, double[:, :] points):
3218
  * assert(points.shape[1] == 2)
3219
  * cdef int n_points = points.shape[0] # <<<<<<<<<<<<<<
@@ -3222,7 +3222,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3222
  */
3223
  __pyx_v_n_points = (__pyx_v_points.shape[0]);
3224
 
3225
- /* "triangle_hash.pyx":63
3226
  * cdef int spatial_idx
3227
  *
3228
  * for i_point in range(n_points): # <<<<<<<<<<<<<<
@@ -3234,7 +3234,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3234
  for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) {
3235
  __pyx_v_i_point = __pyx_t_8;
3236
 
3237
- /* "triangle_hash.pyx":64
3238
  *
3239
  * for i_point in range(n_points):
3240
  * x = int(points[i_point, 0]) # <<<<<<<<<<<<<<
@@ -3245,7 +3245,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3245
  __pyx_t_10 = 0;
3246
  __pyx_v_x = ((int)(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_points.data + __pyx_t_9 * __pyx_v_points.strides[0]) ) + __pyx_t_10 * __pyx_v_points.strides[1]) ))));
3247
 
3248
- /* "triangle_hash.pyx":65
3249
  * for i_point in range(n_points):
3250
  * x = int(points[i_point, 0])
3251
  * y = int(points[i_point, 1]) # <<<<<<<<<<<<<<
@@ -3256,7 +3256,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3256
  __pyx_t_9 = 1;
3257
  __pyx_v_y = ((int)(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_points.data + __pyx_t_10 * __pyx_v_points.strides[0]) ) + __pyx_t_9 * __pyx_v_points.strides[1]) ))));
3258
 
3259
- /* "triangle_hash.pyx":66
3260
  * x = int(points[i_point, 0])
3261
  * y = int(points[i_point, 1])
3262
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution): # <<<<<<<<<<<<<<
@@ -3283,7 +3283,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3283
  __pyx_t_12 = ((!__pyx_t_11) != 0);
3284
  if (__pyx_t_12) {
3285
 
3286
- /* "triangle_hash.pyx":67
3287
  * y = int(points[i_point, 1])
3288
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution):
3289
  * continue # <<<<<<<<<<<<<<
@@ -3292,7 +3292,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3292
  */
3293
  goto __pyx_L3_continue;
3294
 
3295
- /* "triangle_hash.pyx":66
3296
  * x = int(points[i_point, 0])
3297
  * y = int(points[i_point, 1])
3298
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution): # <<<<<<<<<<<<<<
@@ -3301,7 +3301,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3301
  */
3302
  }
3303
 
3304
- /* "triangle_hash.pyx":69
3305
  * continue
3306
  *
3307
  * spatial_idx = self.resolution * x + y # <<<<<<<<<<<<<<
@@ -3310,7 +3310,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3310
  */
3311
  __pyx_v_spatial_idx = ((__pyx_v_self->resolution * __pyx_v_x) + __pyx_v_y);
3312
 
3313
- /* "triangle_hash.pyx":70
3314
  *
3315
  * spatial_idx = self.resolution * x + y
3316
  * for i_tri in self.spatial_hash[spatial_idx]: # <<<<<<<<<<<<<<
@@ -3325,7 +3325,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3325
  ++__pyx_t_14;
3326
  __pyx_v_i_tri = __pyx_t_16;
3327
 
3328
- /* "triangle_hash.pyx":71
3329
  * spatial_idx = self.resolution * x + y
3330
  * for i_tri in self.spatial_hash[spatial_idx]:
3331
  * points_indices.push_back(i_point) # <<<<<<<<<<<<<<
@@ -3336,10 +3336,10 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3336
  __pyx_v_points_indices.push_back(__pyx_v_i_point);
3337
  } catch(...) {
3338
  __Pyx_CppExn2PyErr();
3339
- __PYX_ERR(0, 71, __pyx_L1_error)
3340
  }
3341
 
3342
- /* "triangle_hash.pyx":72
3343
  * for i_tri in self.spatial_hash[spatial_idx]:
3344
  * points_indices.push_back(i_point)
3345
  * tri_indices.push_back(i_tri) # <<<<<<<<<<<<<<
@@ -3350,10 +3350,10 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3350
  __pyx_v_tri_indices.push_back(__pyx_v_i_tri);
3351
  } catch(...) {
3352
  __Pyx_CppExn2PyErr();
3353
- __PYX_ERR(0, 72, __pyx_L1_error)
3354
  }
3355
 
3356
- /* "triangle_hash.pyx":70
3357
  *
3358
  * spatial_idx = self.resolution * x + y
3359
  * for i_tri in self.spatial_hash[spatial_idx]: # <<<<<<<<<<<<<<
@@ -3364,35 +3364,35 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3364
  __pyx_L3_continue:;
3365
  }
3366
 
3367
- /* "triangle_hash.pyx":74
3368
  * tri_indices.push_back(i_tri)
3369
  *
3370
  * points_indices_np = np.zeros(points_indices.size(), dtype=np.int32) # <<<<<<<<<<<<<<
3371
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32)
3372
  *
3373
  */
3374
- __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 74, __pyx_L1_error)
3375
  __Pyx_GOTREF(__pyx_t_1);
3376
- __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 74, __pyx_L1_error)
3377
  __Pyx_GOTREF(__pyx_t_2);
3378
  __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
3379
- __pyx_t_1 = __Pyx_PyInt_FromSize_t(__pyx_v_points_indices.size()); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 74, __pyx_L1_error)
3380
  __Pyx_GOTREF(__pyx_t_1);
3381
- __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 74, __pyx_L1_error)
3382
  __Pyx_GOTREF(__pyx_t_4);
3383
  __Pyx_GIVEREF(__pyx_t_1);
3384
  PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1);
3385
  __pyx_t_1 = 0;
3386
- __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 74, __pyx_L1_error)
3387
  __Pyx_GOTREF(__pyx_t_1);
3388
- __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 74, __pyx_L1_error)
3389
  __Pyx_GOTREF(__pyx_t_3);
3390
- __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_int32); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 74, __pyx_L1_error)
3391
  __Pyx_GOTREF(__pyx_t_5);
3392
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3393
- if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 74, __pyx_L1_error)
3394
  __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
3395
- __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 74, __pyx_L1_error)
3396
  __Pyx_GOTREF(__pyx_t_5);
3397
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
3398
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
@@ -3400,35 +3400,35 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3400
  __pyx_v_points_indices_np = __pyx_t_5;
3401
  __pyx_t_5 = 0;
3402
 
3403
- /* "triangle_hash.pyx":75
3404
  *
3405
  * points_indices_np = np.zeros(points_indices.size(), dtype=np.int32)
3406
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32) # <<<<<<<<<<<<<<
3407
  *
3408
  * cdef int[:] points_indices_view = points_indices_np
3409
  */
3410
- __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 75, __pyx_L1_error)
3411
  __Pyx_GOTREF(__pyx_t_5);
3412
- __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 75, __pyx_L1_error)
3413
  __Pyx_GOTREF(__pyx_t_1);
3414
  __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
3415
- __pyx_t_5 = __Pyx_PyInt_FromSize_t(__pyx_v_tri_indices.size()); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 75, __pyx_L1_error)
3416
  __Pyx_GOTREF(__pyx_t_5);
3417
- __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 75, __pyx_L1_error)
3418
  __Pyx_GOTREF(__pyx_t_4);
3419
  __Pyx_GIVEREF(__pyx_t_5);
3420
  PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5);
3421
  __pyx_t_5 = 0;
3422
- __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 75, __pyx_L1_error)
3423
  __Pyx_GOTREF(__pyx_t_5);
3424
- __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 75, __pyx_L1_error)
3425
  __Pyx_GOTREF(__pyx_t_2);
3426
- __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int32); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 75, __pyx_L1_error)
3427
  __Pyx_GOTREF(__pyx_t_3);
3428
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
3429
- if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_3) < 0) __PYX_ERR(0, 75, __pyx_L1_error)
3430
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3431
- __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 75, __pyx_L1_error)
3432
  __Pyx_GOTREF(__pyx_t_3);
3433
  __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
3434
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
@@ -3436,31 +3436,31 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3436
  __pyx_v_tri_indices_np = __pyx_t_3;
3437
  __pyx_t_3 = 0;
3438
 
3439
- /* "triangle_hash.pyx":77
3440
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32)
3441
  *
3442
  * cdef int[:] points_indices_view = points_indices_np # <<<<<<<<<<<<<<
3443
  * cdef int[:] tri_indices_view = tri_indices_np
3444
  *
3445
  */
3446
- __pyx_t_17 = __Pyx_PyObject_to_MemoryviewSlice_ds_int(__pyx_v_points_indices_np, PyBUF_WRITABLE); if (unlikely(!__pyx_t_17.memview)) __PYX_ERR(0, 77, __pyx_L1_error)
3447
  __pyx_v_points_indices_view = __pyx_t_17;
3448
  __pyx_t_17.memview = NULL;
3449
  __pyx_t_17.data = NULL;
3450
 
3451
- /* "triangle_hash.pyx":78
3452
  *
3453
  * cdef int[:] points_indices_view = points_indices_np
3454
  * cdef int[:] tri_indices_view = tri_indices_np # <<<<<<<<<<<<<<
3455
  *
3456
  * for k in range(points_indices.size()):
3457
  */
3458
- __pyx_t_17 = __Pyx_PyObject_to_MemoryviewSlice_ds_int(__pyx_v_tri_indices_np, PyBUF_WRITABLE); if (unlikely(!__pyx_t_17.memview)) __PYX_ERR(0, 78, __pyx_L1_error)
3459
  __pyx_v_tri_indices_view = __pyx_t_17;
3460
  __pyx_t_17.memview = NULL;
3461
  __pyx_t_17.data = NULL;
3462
 
3463
- /* "triangle_hash.pyx":80
3464
  * cdef int[:] tri_indices_view = tri_indices_np
3465
  *
3466
  * for k in range(points_indices.size()): # <<<<<<<<<<<<<<
@@ -3472,7 +3472,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3472
  for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_19; __pyx_t_6+=1) {
3473
  __pyx_v_k = __pyx_t_6;
3474
 
3475
- /* "triangle_hash.pyx":81
3476
  *
3477
  * for k in range(points_indices.size()):
3478
  * points_indices_view[k] = points_indices[k] # <<<<<<<<<<<<<<
@@ -3483,7 +3483,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3483
  *((int *) ( /* dim=0 */ (__pyx_v_points_indices_view.data + __pyx_t_9 * __pyx_v_points_indices_view.strides[0]) )) = (__pyx_v_points_indices[__pyx_v_k]);
3484
  }
3485
 
3486
- /* "triangle_hash.pyx":83
3487
  * points_indices_view[k] = points_indices[k]
3488
  *
3489
  * for k in range(tri_indices.size()): # <<<<<<<<<<<<<<
@@ -3495,7 +3495,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3495
  for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_19; __pyx_t_6+=1) {
3496
  __pyx_v_k = __pyx_t_6;
3497
 
3498
- /* "triangle_hash.pyx":84
3499
  *
3500
  * for k in range(tri_indices.size()):
3501
  * tri_indices_view[k] = tri_indices[k] # <<<<<<<<<<<<<<
@@ -3506,13 +3506,13 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3506
  *((int *) ( /* dim=0 */ (__pyx_v_tri_indices_view.data + __pyx_t_9 * __pyx_v_tri_indices_view.strides[0]) )) = (__pyx_v_tri_indices[__pyx_v_k]);
3507
  }
3508
 
3509
- /* "triangle_hash.pyx":86
3510
  * tri_indices_view[k] = tri_indices[k]
3511
  *
3512
  * return points_indices_np, tri_indices_np # <<<<<<<<<<<<<<
3513
  */
3514
  __Pyx_XDECREF(__pyx_r);
3515
- __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 86, __pyx_L1_error)
3516
  __Pyx_GOTREF(__pyx_t_3);
3517
  __Pyx_INCREF(__pyx_v_points_indices_np);
3518
  __Pyx_GIVEREF(__pyx_v_points_indices_np);
@@ -3524,7 +3524,7 @@ static PyObject *__pyx_f_13triangle_hash_12TriangleHash_query(struct __pyx_obj_1
3524
  __pyx_t_3 = 0;
3525
  goto __pyx_L0;
3526
 
3527
- /* "triangle_hash.pyx":51
3528
  * @cython.boundscheck(False) # Deactivate bounds checking
3529
  * @cython.wraparound(False) # Deactivate negative indexing.
3530
  * cpdef query(self, double[:, :] points): # <<<<<<<<<<<<<<
@@ -3563,7 +3563,7 @@ static PyObject *__pyx_pw_13triangle_hash_12TriangleHash_3query(PyObject *__pyx_
3563
  __Pyx_RefNannyDeclarations
3564
  __Pyx_RefNannySetupContext("query (wrapper)", 0);
3565
  assert(__pyx_arg_points); {
3566
- __pyx_v_points = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_arg_points, PyBUF_WRITABLE); if (unlikely(!__pyx_v_points.memview)) __PYX_ERR(0, 51, __pyx_L3_error)
3567
  }
3568
  goto __pyx_L4_argument_unpacking_done;
3569
  __pyx_L3_error:;
@@ -3587,8 +3587,8 @@ static PyObject *__pyx_pf_13triangle_hash_12TriangleHash_2query(struct __pyx_obj
3587
  int __pyx_clineno = 0;
3588
  __Pyx_RefNannySetupContext("query", 0);
3589
  __Pyx_XDECREF(__pyx_r);
3590
- if (unlikely(!__pyx_v_points.memview)) { __Pyx_RaiseUnboundLocalError("points"); __PYX_ERR(0, 51, __pyx_L1_error) }
3591
- __pyx_t_1 = __pyx_f_13triangle_hash_12TriangleHash_query(__pyx_v_self, __pyx_v_points, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 51, __pyx_L1_error)
3592
  __Pyx_GOTREF(__pyx_t_1);
3593
  __pyx_r = __pyx_t_1;
3594
  __pyx_t_1 = 0;
@@ -18738,7 +18738,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = {
18738
  {0, 0, 0, 0, 0, 0, 0}
18739
  };
18740
  static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) {
18741
- __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 31, __pyx_L1_error)
18742
  __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(1, 2, __pyx_L1_error)
18743
  __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(2, 945, __pyx_L1_error)
18744
  __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 133, __pyx_L1_error)
@@ -19118,16 +19118,16 @@ static int __Pyx_modinit_type_init_code(void) {
19118
  __pyx_vtabptr_13triangle_hash_TriangleHash = &__pyx_vtable_13triangle_hash_TriangleHash;
19119
  __pyx_vtable_13triangle_hash_TriangleHash._build_hash = (int (*)(struct __pyx_obj_13triangle_hash_TriangleHash *, __Pyx_memviewslice))__pyx_f_13triangle_hash_12TriangleHash__build_hash;
19120
  __pyx_vtable_13triangle_hash_TriangleHash.query = (PyObject *(*)(struct __pyx_obj_13triangle_hash_TriangleHash *, __Pyx_memviewslice, int __pyx_skip_dispatch))__pyx_f_13triangle_hash_12TriangleHash_query;
19121
- if (PyType_Ready(&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 9, __pyx_L1_error)
19122
  #if PY_VERSION_HEX < 0x030800B1
19123
  __pyx_type_13triangle_hash_TriangleHash.tp_print = 0;
19124
  #endif
19125
  if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type_13triangle_hash_TriangleHash.tp_dictoffset && __pyx_type_13triangle_hash_TriangleHash.tp_getattro == PyObject_GenericGetAttr)) {
19126
  __pyx_type_13triangle_hash_TriangleHash.tp_getattro = __Pyx_PyObject_GenericGetAttr;
19127
  }
19128
- if (__Pyx_SetVtable(__pyx_type_13triangle_hash_TriangleHash.tp_dict, __pyx_vtabptr_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 9, __pyx_L1_error)
19129
- if (PyObject_SetAttr(__pyx_m, __pyx_n_s_TriangleHash, (PyObject *)&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 9, __pyx_L1_error)
19130
- if (__Pyx_setup_reduce((PyObject*)&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 9, __pyx_L1_error)
19131
  __pyx_ptype_13triangle_hash_TriangleHash = &__pyx_type_13triangle_hash_TriangleHash;
19132
  __pyx_vtabptr_array = &__pyx_vtable_array;
19133
  __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview;
@@ -19468,7 +19468,7 @@ if (!__Pyx_RefNanny) {
19468
  *
19469
  * # distutils: language=c++
19470
  * import numpy as np # <<<<<<<<<<<<<<
19471
- * cimport numpy as np
19472
  * cimport cython
19473
  */
19474
  __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3, __pyx_L1_error)
@@ -19480,7 +19480,7 @@ if (!__Pyx_RefNanny) {
19480
  *
19481
  * # distutils: language=c++ # <<<<<<<<<<<<<<
19482
  * import numpy as np
19483
- * cimport numpy as np
19484
  */
19485
  __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2, __pyx_L1_error)
19486
  __Pyx_GOTREF(__pyx_t_1);
 
720
 
721
  /* NumPy API declarations from "numpy/__init__.pxd" */
722
 
723
+ #include <math.h>
724
  #include "ios"
725
  #include "new"
726
  #include "stdexcept"
727
  #include "typeinfo"
728
  #include <vector>
 
729
  #include "pythread.h"
730
  #include <stdlib.h>
731
  #include "pystate.h"
 
1330
  */
1331
  typedef npy_cdouble __pyx_t_5numpy_complex_t;
1332
 
1333
+ /* "triangle_hash.pyx":11
1334
+ *
1335
  *
1336
  * cdef class TriangleHash: # <<<<<<<<<<<<<<
1337
  * cdef vector[vector[int]] spatial_hash
 
1423
 
1424
 
1425
 
1426
+ /* "triangle_hash.pyx":11
1427
+ *
1428
  *
1429
  * cdef class TriangleHash: # <<<<<<<<<<<<<<
1430
  * cdef vector[vector[int]] spatial_hash
 
2279
  static PyObject *__pyx_memoryviewslice_convert_item_to_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp); /* proto*/
2280
  static PyObject *__pyx_memoryviewslice_assign_item_from_object(struct __pyx_memoryviewslice_obj *__pyx_v_self, char *__pyx_v_itemp, PyObject *__pyx_v_value); /* proto*/
2281
 
2282
+ /* Module declarations from 'cython.view' */
2283
+
2284
+ /* Module declarations from 'cython' */
2285
+
2286
  /* Module declarations from 'cpython.buffer' */
2287
 
2288
  /* Module declarations from 'libc.string' */
 
2321
  static PyTypeObject *__pyx_ptype_5numpy_character = 0;
2322
  static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0;
2323
 
2324
+ /* Module declarations from 'libc.math' */
 
 
2325
 
2326
  /* Module declarations from 'libcpp.vector' */
2327
 
 
 
2328
  /* Module declarations from 'triangle_hash' */
2329
  static PyTypeObject *__pyx_ptype_13triangle_hash_TriangleHash = 0;
2330
  static PyTypeObject *__pyx_array_type = 0;
 
2667
  static PyObject *__pyx_codeobj__29;
2668
  /* Late includes */
2669
 
2670
+ /* "triangle_hash.pyx":15
2671
  * cdef int resolution
2672
  *
2673
  * def __cinit__(self, double[:, :, :] triangles, int resolution): # <<<<<<<<<<<<<<
 
2709
  case 1:
2710
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_resolution)) != 0)) kw_args--;
2711
  else {
2712
+ __Pyx_RaiseArgtupleInvalid("__cinit__", 1, 2, 2, 1); __PYX_ERR(0, 15, __pyx_L3_error)
2713
  }
2714
  }
2715
  if (unlikely(kw_args > 0)) {
2716
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__cinit__") < 0)) __PYX_ERR(0, 15, __pyx_L3_error)
2717
  }
2718
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2719
  goto __pyx_L5_argtuple_error;
 
2721
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2722
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2723
  }
2724
+ __pyx_v_triangles = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_double(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_triangles.memview)) __PYX_ERR(0, 15, __pyx_L3_error)
2725
+ __pyx_v_resolution = __Pyx_PyInt_As_int(values[1]); if (unlikely((__pyx_v_resolution == (int)-1) && PyErr_Occurred())) __PYX_ERR(0, 15, __pyx_L3_error)
2726
  }
2727
  goto __pyx_L4_argument_unpacking_done;
2728
  __pyx_L5_argtuple_error:;
2729
+ __Pyx_RaiseArgtupleInvalid("__cinit__", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 15, __pyx_L3_error)
2730
  __pyx_L3_error:;
2731
  __Pyx_AddTraceback("triangle_hash.TriangleHash.__cinit__", __pyx_clineno, __pyx_lineno, __pyx_filename);
2732
  __Pyx_RefNannyFinishContext();
 
2747
  int __pyx_clineno = 0;
2748
  __Pyx_RefNannySetupContext("__cinit__", 0);
2749
 
2750
+ /* "triangle_hash.pyx":16
2751
  *
2752
  * def __cinit__(self, double[:, :, :] triangles, int resolution):
2753
  * self.spatial_hash.resize(resolution * resolution) # <<<<<<<<<<<<<<
 
2758
  __pyx_v_self->spatial_hash.resize((__pyx_v_resolution * __pyx_v_resolution));
2759
  } catch(...) {
2760
  __Pyx_CppExn2PyErr();
2761
+ __PYX_ERR(0, 16, __pyx_L1_error)
2762
  }
2763
 
2764
+ /* "triangle_hash.pyx":17
2765
  * def __cinit__(self, double[:, :, :] triangles, int resolution):
2766
  * self.spatial_hash.resize(resolution * resolution)
2767
  * self.resolution = resolution # <<<<<<<<<<<<<<
 
2770
  */
2771
  __pyx_v_self->resolution = __pyx_v_resolution;
2772
 
2773
+ /* "triangle_hash.pyx":18
2774
  * self.spatial_hash.resize(resolution * resolution)
2775
  * self.resolution = resolution
2776
  * self._build_hash(triangles) # <<<<<<<<<<<<<<
 
2779
  */
2780
  (void)(((struct __pyx_vtabstruct_13triangle_hash_TriangleHash *)__pyx_v_self->__pyx_vtab)->_build_hash(__pyx_v_self, __pyx_v_triangles));
2781
 
2782
+ /* "triangle_hash.pyx":15
2783
  * cdef int resolution
2784
  *
2785
  * def __cinit__(self, double[:, :, :] triangles, int resolution): # <<<<<<<<<<<<<<
 
2799
  return __pyx_r;
2800
  }
2801
 
2802
+ /* "triangle_hash.pyx":22
2803
  * @cython.boundscheck(False) # Deactivate bounds checking
2804
  * @cython.wraparound(False) # Deactivate negative indexing.
2805
  * cdef int _build_hash(self, double[:, :, :] triangles): # <<<<<<<<<<<<<<
 
2839
  int __pyx_clineno = 0;
2840
  __Pyx_RefNannySetupContext("_build_hash", 0);
2841
 
2842
+ /* "triangle_hash.pyx":23
2843
  * @cython.wraparound(False) # Deactivate negative indexing.
2844
  * cdef int _build_hash(self, double[:, :, :] triangles):
2845
  * assert(triangles.shape[1] == 3) # <<<<<<<<<<<<<<
 
2850
  if (unlikely(!Py_OptimizeFlag)) {
2851
  if (unlikely(!(((__pyx_v_triangles.shape[1]) == 3) != 0))) {
2852
  PyErr_SetNone(PyExc_AssertionError);
2853
+ __PYX_ERR(0, 23, __pyx_L1_error)
2854
  }
2855
  }
2856
  #endif
2857
 
2858
+ /* "triangle_hash.pyx":24
2859
  * cdef int _build_hash(self, double[:, :, :] triangles):
2860
  * assert(triangles.shape[1] == 3)
2861
  * assert(triangles.shape[2] == 2) # <<<<<<<<<<<<<<
 
2866
  if (unlikely(!Py_OptimizeFlag)) {
2867
  if (unlikely(!(((__pyx_v_triangles.shape[2]) == 2) != 0))) {
2868
  PyErr_SetNone(PyExc_AssertionError);
2869
+ __PYX_ERR(0, 24, __pyx_L1_error)
2870
  }
2871
  }
2872
  #endif
2873
 
2874
+ /* "triangle_hash.pyx":26
2875
  * assert(triangles.shape[2] == 2)
2876
  *
2877
  * cdef int n_tri = triangles.shape[0] # <<<<<<<<<<<<<<
 
2880
  */
2881
  __pyx_v_n_tri = (__pyx_v_triangles.shape[0]);
2882
 
2883
+ /* "triangle_hash.pyx":33
2884
  * cdef int spatial_idx
2885
  *
2886
  * for i_tri in range(n_tri): # <<<<<<<<<<<<<<
 
2892
  for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) {
2893
  __pyx_v_i_tri = __pyx_t_3;
2894
 
2895
+ /* "triangle_hash.pyx":35
2896
  * for i_tri in range(n_tri):
2897
  * # Compute bounding box
2898
  * for j in range(2): # <<<<<<<<<<<<<<
 
2902
  for (__pyx_t_4 = 0; __pyx_t_4 < 2; __pyx_t_4+=1) {
2903
  __pyx_v_j = __pyx_t_4;
2904
 
2905
+ /* "triangle_hash.pyx":37
2906
  * for j in range(2):
2907
  * bbox_min[j] = <int> min(
2908
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] # <<<<<<<<<<<<<<
 
2933
  __pyx_t_11 = __pyx_t_10;
2934
  }
2935
 
2936
+ /* "triangle_hash.pyx":36
2937
  * # Compute bounding box
2938
  * for j in range(2):
2939
  * bbox_min[j] = <int> min( # <<<<<<<<<<<<<<
 
2942
  */
2943
  (__pyx_v_bbox_min[__pyx_v_j]) = ((int)__pyx_t_11);
2944
 
2945
+ /* "triangle_hash.pyx":40
2946
  * )
2947
  * bbox_max[j] = <int> max(
2948
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j] # <<<<<<<<<<<<<<
 
2973
  __pyx_t_10 = __pyx_t_9;
2974
  }
2975
 
2976
+ /* "triangle_hash.pyx":39
2977
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j]
2978
  * )
2979
  * bbox_max[j] = <int> max( # <<<<<<<<<<<<<<
 
2982
  */
2983
  (__pyx_v_bbox_max[__pyx_v_j]) = ((int)__pyx_t_10);
2984
 
2985
+ /* "triangle_hash.pyx":42
2986
  * triangles[i_tri, 0, j], triangles[i_tri, 1, j], triangles[i_tri, 2, j]
2987
  * )
2988
  * bbox_min[j] = min(max(bbox_min[j], 0), self.resolution - 1) # <<<<<<<<<<<<<<
 
3005
  }
3006
  (__pyx_v_bbox_min[__pyx_v_j]) = __pyx_t_15;
3007
 
3008
+ /* "triangle_hash.pyx":43
3009
  * )
3010
  * bbox_min[j] = min(max(bbox_min[j], 0), self.resolution - 1)
3011
  * bbox_max[j] = min(max(bbox_max[j], 0), self.resolution - 1) # <<<<<<<<<<<<<<
 
3029
  (__pyx_v_bbox_max[__pyx_v_j]) = __pyx_t_13;
3030
  }
3031
 
3032
+ /* "triangle_hash.pyx":46
3033
  *
3034
  * # Find all voxels where bounding box intersects
3035
  * for x in range(bbox_min[0], bbox_max[0] + 1): # <<<<<<<<<<<<<<
 
3041
  for (__pyx_t_4 = (__pyx_v_bbox_min[0]); __pyx_t_4 < __pyx_t_15; __pyx_t_4+=1) {
3042
  __pyx_v_x = __pyx_t_4;
3043
 
3044
+ /* "triangle_hash.pyx":47
3045
  * # Find all voxels where bounding box intersects
3046
  * for x in range(bbox_min[0], bbox_max[0] + 1):
3047
  * for y in range(bbox_min[1], bbox_max[1] + 1): # <<<<<<<<<<<<<<
 
3053
  for (__pyx_t_14 = (__pyx_v_bbox_min[1]); __pyx_t_14 < __pyx_t_16; __pyx_t_14+=1) {
3054
  __pyx_v_y = __pyx_t_14;
3055
 
3056
+ /* "triangle_hash.pyx":48
3057
  * for x in range(bbox_min[0], bbox_max[0] + 1):
3058
  * for y in range(bbox_min[1], bbox_max[1] + 1):
3059
  * spatial_idx = self.resolution * x + y # <<<<<<<<<<<<<<
 
3062
  */
3063
  __pyx_v_spatial_idx = ((__pyx_v_self->resolution * __pyx_v_x) + __pyx_v_y);
3064
 
3065
+ /* "triangle_hash.pyx":49
3066
  * for y in range(bbox_min[1], bbox_max[1] + 1):
3067
  * spatial_idx = self.resolution * x + y
3068
  * self.spatial_hash[spatial_idx].push_back(i_tri) # <<<<<<<<<<<<<<
 
3073
  (__pyx_v_self->spatial_hash[__pyx_v_spatial_idx]).push_back(__pyx_v_i_tri);
3074
  } catch(...) {
3075
  __Pyx_CppExn2PyErr();
3076
+ __PYX_ERR(0, 49, __pyx_L1_error)
3077
  }
3078
  }
3079
  }
3080
  }
3081
 
3082
+ /* "triangle_hash.pyx":22
3083
  * @cython.boundscheck(False) # Deactivate bounds checking
3084
  * @cython.wraparound(False) # Deactivate negative indexing.
3085
  * cdef int _build_hash(self, double[:, :, :] triangles): # <<<<<<<<<<<<<<
 
3098
  return __pyx_r;
3099
  }
3100
 
3101
+ /* "triangle_hash.pyx":53
3102
  * @cython.boundscheck(False) # Deactivate bounds checking
3103
  * @cython.wraparound(False) # Deactivate negative indexing.
3104
  * cpdef query(self, double[:, :] points): # <<<<<<<<<<<<<<
 
3155
  if (unlikely(!__Pyx_object_dict_version_matches(((PyObject *)__pyx_v_self), __pyx_tp_dict_version, __pyx_obj_dict_version))) {
3156
  PY_UINT64_T __pyx_type_dict_guard = __Pyx_get_tp_dict_version(((PyObject *)__pyx_v_self));
3157
  #endif
3158
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_self), __pyx_n_s_query); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 53, __pyx_L1_error)
3159
  __Pyx_GOTREF(__pyx_t_1);
3160
  if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)(void*)__pyx_pw_13triangle_hash_12TriangleHash_3query)) {
3161
  __Pyx_XDECREF(__pyx_r);
3162
+ if (unlikely(!__pyx_v_points.memview)) { __Pyx_RaiseUnboundLocalError("points"); __PYX_ERR(0, 53, __pyx_L1_error) }
3163
+ __pyx_t_3 = __pyx_memoryview_fromslice(__pyx_v_points, 2, (PyObject *(*)(char *)) __pyx_memview_get_double, (int (*)(char *, PyObject *)) __pyx_memview_set_double, 0);; if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 53, __pyx_L1_error)
3164
  __Pyx_GOTREF(__pyx_t_3);
3165
  __Pyx_INCREF(__pyx_t_1);
3166
  __pyx_t_4 = __pyx_t_1; __pyx_t_5 = NULL;
 
3176
  __pyx_t_2 = (__pyx_t_5) ? __Pyx_PyObject_Call2Args(__pyx_t_4, __pyx_t_5, __pyx_t_3) : __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_3);
3177
  __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
3178
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3179
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 53, __pyx_L1_error)
3180
  __Pyx_GOTREF(__pyx_t_2);
3181
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
3182
  __pyx_r = __pyx_t_2;
 
3197
  #endif
3198
  }
3199
 
3200
+ /* "triangle_hash.pyx":54
3201
  * @cython.wraparound(False) # Deactivate negative indexing.
3202
  * cpdef query(self, double[:, :] points):
3203
  * assert(points.shape[1] == 2) # <<<<<<<<<<<<<<
 
3208
  if (unlikely(!Py_OptimizeFlag)) {
3209
  if (unlikely(!(((__pyx_v_points.shape[1]) == 2) != 0))) {
3210
  PyErr_SetNone(PyExc_AssertionError);
3211
+ __PYX_ERR(0, 54, __pyx_L1_error)
3212
  }
3213
  }
3214
  #endif
3215
 
3216
+ /* "triangle_hash.pyx":55
3217
  * cpdef query(self, double[:, :] points):
3218
  * assert(points.shape[1] == 2)
3219
  * cdef int n_points = points.shape[0] # <<<<<<<<<<<<<<
 
3222
  */
3223
  __pyx_v_n_points = (__pyx_v_points.shape[0]);
3224
 
3225
+ /* "triangle_hash.pyx":65
3226
  * cdef int spatial_idx
3227
  *
3228
  * for i_point in range(n_points): # <<<<<<<<<<<<<<
 
3234
  for (__pyx_t_8 = 0; __pyx_t_8 < __pyx_t_7; __pyx_t_8+=1) {
3235
  __pyx_v_i_point = __pyx_t_8;
3236
 
3237
+ /* "triangle_hash.pyx":66
3238
  *
3239
  * for i_point in range(n_points):
3240
  * x = int(points[i_point, 0]) # <<<<<<<<<<<<<<
 
3245
  __pyx_t_10 = 0;
3246
  __pyx_v_x = ((int)(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_points.data + __pyx_t_9 * __pyx_v_points.strides[0]) ) + __pyx_t_10 * __pyx_v_points.strides[1]) ))));
3247
 
3248
+ /* "triangle_hash.pyx":67
3249
  * for i_point in range(n_points):
3250
  * x = int(points[i_point, 0])
3251
  * y = int(points[i_point, 1]) # <<<<<<<<<<<<<<
 
3256
  __pyx_t_9 = 1;
3257
  __pyx_v_y = ((int)(*((double *) ( /* dim=1 */ (( /* dim=0 */ (__pyx_v_points.data + __pyx_t_10 * __pyx_v_points.strides[0]) ) + __pyx_t_9 * __pyx_v_points.strides[1]) ))));
3258
 
3259
+ /* "triangle_hash.pyx":68
3260
  * x = int(points[i_point, 0])
3261
  * y = int(points[i_point, 1])
3262
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution): # <<<<<<<<<<<<<<
 
3283
  __pyx_t_12 = ((!__pyx_t_11) != 0);
3284
  if (__pyx_t_12) {
3285
 
3286
+ /* "triangle_hash.pyx":69
3287
  * y = int(points[i_point, 1])
3288
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution):
3289
  * continue # <<<<<<<<<<<<<<
 
3292
  */
3293
  goto __pyx_L3_continue;
3294
 
3295
+ /* "triangle_hash.pyx":68
3296
  * x = int(points[i_point, 0])
3297
  * y = int(points[i_point, 1])
3298
  * if not (0 <= x < self.resolution and 0 <= y < self.resolution): # <<<<<<<<<<<<<<
 
3301
  */
3302
  }
3303
 
3304
+ /* "triangle_hash.pyx":71
3305
  * continue
3306
  *
3307
  * spatial_idx = self.resolution * x + y # <<<<<<<<<<<<<<
 
3310
  */
3311
  __pyx_v_spatial_idx = ((__pyx_v_self->resolution * __pyx_v_x) + __pyx_v_y);
3312
 
3313
+ /* "triangle_hash.pyx":72
3314
  *
3315
  * spatial_idx = self.resolution * x + y
3316
  * for i_tri in self.spatial_hash[spatial_idx]: # <<<<<<<<<<<<<<
 
3325
  ++__pyx_t_14;
3326
  __pyx_v_i_tri = __pyx_t_16;
3327
 
3328
+ /* "triangle_hash.pyx":73
3329
  * spatial_idx = self.resolution * x + y
3330
  * for i_tri in self.spatial_hash[spatial_idx]:
3331
  * points_indices.push_back(i_point) # <<<<<<<<<<<<<<
 
3336
  __pyx_v_points_indices.push_back(__pyx_v_i_point);
3337
  } catch(...) {
3338
  __Pyx_CppExn2PyErr();
3339
+ __PYX_ERR(0, 73, __pyx_L1_error)
3340
  }
3341
 
3342
+ /* "triangle_hash.pyx":74
3343
  * for i_tri in self.spatial_hash[spatial_idx]:
3344
  * points_indices.push_back(i_point)
3345
  * tri_indices.push_back(i_tri) # <<<<<<<<<<<<<<
 
3350
  __pyx_v_tri_indices.push_back(__pyx_v_i_tri);
3351
  } catch(...) {
3352
  __Pyx_CppExn2PyErr();
3353
+ __PYX_ERR(0, 74, __pyx_L1_error)
3354
  }
3355
 
3356
+ /* "triangle_hash.pyx":72
3357
  *
3358
  * spatial_idx = self.resolution * x + y
3359
  * for i_tri in self.spatial_hash[spatial_idx]: # <<<<<<<<<<<<<<
 
3364
  __pyx_L3_continue:;
3365
  }
3366
 
3367
+ /* "triangle_hash.pyx":76
3368
  * tri_indices.push_back(i_tri)
3369
  *
3370
  * points_indices_np = np.zeros(points_indices.size(), dtype=np.int32) # <<<<<<<<<<<<<<
3371
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32)
3372
  *
3373
  */
3374
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_np); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 76, __pyx_L1_error)
3375
  __Pyx_GOTREF(__pyx_t_1);
3376
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_zeros); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 76, __pyx_L1_error)
3377
  __Pyx_GOTREF(__pyx_t_2);
3378
  __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
3379
+ __pyx_t_1 = __Pyx_PyInt_FromSize_t(__pyx_v_points_indices.size()); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 76, __pyx_L1_error)
3380
  __Pyx_GOTREF(__pyx_t_1);
3381
+ __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 76, __pyx_L1_error)
3382
  __Pyx_GOTREF(__pyx_t_4);
3383
  __Pyx_GIVEREF(__pyx_t_1);
3384
  PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1);
3385
  __pyx_t_1 = 0;
3386
+ __pyx_t_1 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 76, __pyx_L1_error)
3387
  __Pyx_GOTREF(__pyx_t_1);
3388
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_np); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 76, __pyx_L1_error)
3389
  __Pyx_GOTREF(__pyx_t_3);
3390
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_int32); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 76, __pyx_L1_error)
3391
  __Pyx_GOTREF(__pyx_t_5);
3392
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3393
+ if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) __PYX_ERR(0, 76, __pyx_L1_error)
3394
  __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
3395
+ __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_4, __pyx_t_1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 76, __pyx_L1_error)
3396
  __Pyx_GOTREF(__pyx_t_5);
3397
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
3398
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 
3400
  __pyx_v_points_indices_np = __pyx_t_5;
3401
  __pyx_t_5 = 0;
3402
 
3403
+ /* "triangle_hash.pyx":77
3404
  *
3405
  * points_indices_np = np.zeros(points_indices.size(), dtype=np.int32)
3406
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32) # <<<<<<<<<<<<<<
3407
  *
3408
  * cdef int[:] points_indices_view = points_indices_np
3409
  */
3410
+ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_np); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 77, __pyx_L1_error)
3411
  __Pyx_GOTREF(__pyx_t_5);
3412
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_zeros); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 77, __pyx_L1_error)
3413
  __Pyx_GOTREF(__pyx_t_1);
3414
  __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
3415
+ __pyx_t_5 = __Pyx_PyInt_FromSize_t(__pyx_v_tri_indices.size()); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 77, __pyx_L1_error)
3416
  __Pyx_GOTREF(__pyx_t_5);
3417
+ __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 77, __pyx_L1_error)
3418
  __Pyx_GOTREF(__pyx_t_4);
3419
  __Pyx_GIVEREF(__pyx_t_5);
3420
  PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_5);
3421
  __pyx_t_5 = 0;
3422
+ __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 77, __pyx_L1_error)
3423
  __Pyx_GOTREF(__pyx_t_5);
3424
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_np); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 77, __pyx_L1_error)
3425
  __Pyx_GOTREF(__pyx_t_2);
3426
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_int32); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 77, __pyx_L1_error)
3427
  __Pyx_GOTREF(__pyx_t_3);
3428
  __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
3429
+ if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_dtype, __pyx_t_3) < 0) __PYX_ERR(0, 77, __pyx_L1_error)
3430
  __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
3431
+ __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 77, __pyx_L1_error)
3432
  __Pyx_GOTREF(__pyx_t_3);
3433
  __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
3434
  __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 
3436
  __pyx_v_tri_indices_np = __pyx_t_3;
3437
  __pyx_t_3 = 0;
3438
 
3439
+ /* "triangle_hash.pyx":79
3440
  * tri_indices_np = np.zeros(tri_indices.size(), dtype=np.int32)
3441
  *
3442
  * cdef int[:] points_indices_view = points_indices_np # <<<<<<<<<<<<<<
3443
  * cdef int[:] tri_indices_view = tri_indices_np
3444
  *
3445
  */
3446
+ __pyx_t_17 = __Pyx_PyObject_to_MemoryviewSlice_ds_int(__pyx_v_points_indices_np, PyBUF_WRITABLE); if (unlikely(!__pyx_t_17.memview)) __PYX_ERR(0, 79, __pyx_L1_error)
3447
  __pyx_v_points_indices_view = __pyx_t_17;
3448
  __pyx_t_17.memview = NULL;
3449
  __pyx_t_17.data = NULL;
3450
 
3451
+ /* "triangle_hash.pyx":80
3452
  *
3453
  * cdef int[:] points_indices_view = points_indices_np
3454
  * cdef int[:] tri_indices_view = tri_indices_np # <<<<<<<<<<<<<<
3455
  *
3456
  * for k in range(points_indices.size()):
3457
  */
3458
+ __pyx_t_17 = __Pyx_PyObject_to_MemoryviewSlice_ds_int(__pyx_v_tri_indices_np, PyBUF_WRITABLE); if (unlikely(!__pyx_t_17.memview)) __PYX_ERR(0, 80, __pyx_L1_error)
3459
  __pyx_v_tri_indices_view = __pyx_t_17;
3460
  __pyx_t_17.memview = NULL;
3461
  __pyx_t_17.data = NULL;
3462
 
3463
+ /* "triangle_hash.pyx":82
3464
  * cdef int[:] tri_indices_view = tri_indices_np
3465
  *
3466
  * for k in range(points_indices.size()): # <<<<<<<<<<<<<<
 
3472
  for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_19; __pyx_t_6+=1) {
3473
  __pyx_v_k = __pyx_t_6;
3474
 
3475
+ /* "triangle_hash.pyx":83
3476
  *
3477
  * for k in range(points_indices.size()):
3478
  * points_indices_view[k] = points_indices[k] # <<<<<<<<<<<<<<
 
3483
  *((int *) ( /* dim=0 */ (__pyx_v_points_indices_view.data + __pyx_t_9 * __pyx_v_points_indices_view.strides[0]) )) = (__pyx_v_points_indices[__pyx_v_k]);
3484
  }
3485
 
3486
+ /* "triangle_hash.pyx":85
3487
  * points_indices_view[k] = points_indices[k]
3488
  *
3489
  * for k in range(tri_indices.size()): # <<<<<<<<<<<<<<
 
3495
  for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_19; __pyx_t_6+=1) {
3496
  __pyx_v_k = __pyx_t_6;
3497
 
3498
+ /* "triangle_hash.pyx":86
3499
  *
3500
  * for k in range(tri_indices.size()):
3501
  * tri_indices_view[k] = tri_indices[k] # <<<<<<<<<<<<<<
 
3506
  *((int *) ( /* dim=0 */ (__pyx_v_tri_indices_view.data + __pyx_t_9 * __pyx_v_tri_indices_view.strides[0]) )) = (__pyx_v_tri_indices[__pyx_v_k]);
3507
  }
3508
 
3509
+ /* "triangle_hash.pyx":88
3510
  * tri_indices_view[k] = tri_indices[k]
3511
  *
3512
  * return points_indices_np, tri_indices_np # <<<<<<<<<<<<<<
3513
  */
3514
  __Pyx_XDECREF(__pyx_r);
3515
+ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 88, __pyx_L1_error)
3516
  __Pyx_GOTREF(__pyx_t_3);
3517
  __Pyx_INCREF(__pyx_v_points_indices_np);
3518
  __Pyx_GIVEREF(__pyx_v_points_indices_np);
 
3524
  __pyx_t_3 = 0;
3525
  goto __pyx_L0;
3526
 
3527
+ /* "triangle_hash.pyx":53
3528
  * @cython.boundscheck(False) # Deactivate bounds checking
3529
  * @cython.wraparound(False) # Deactivate negative indexing.
3530
  * cpdef query(self, double[:, :] points): # <<<<<<<<<<<<<<
 
3563
  __Pyx_RefNannyDeclarations
3564
  __Pyx_RefNannySetupContext("query (wrapper)", 0);
3565
  assert(__pyx_arg_points); {
3566
+ __pyx_v_points = __Pyx_PyObject_to_MemoryviewSlice_dsds_double(__pyx_arg_points, PyBUF_WRITABLE); if (unlikely(!__pyx_v_points.memview)) __PYX_ERR(0, 53, __pyx_L3_error)
3567
  }
3568
  goto __pyx_L4_argument_unpacking_done;
3569
  __pyx_L3_error:;
 
3587
  int __pyx_clineno = 0;
3588
  __Pyx_RefNannySetupContext("query", 0);
3589
  __Pyx_XDECREF(__pyx_r);
3590
+ if (unlikely(!__pyx_v_points.memview)) { __Pyx_RaiseUnboundLocalError("points"); __PYX_ERR(0, 53, __pyx_L1_error) }
3591
+ __pyx_t_1 = __pyx_f_13triangle_hash_12TriangleHash_query(__pyx_v_self, __pyx_v_points, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 53, __pyx_L1_error)
3592
  __Pyx_GOTREF(__pyx_t_1);
3593
  __pyx_r = __pyx_t_1;
3594
  __pyx_t_1 = 0;
 
18738
  {0, 0, 0, 0, 0, 0, 0}
18739
  };
18740
  static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) {
18741
+ __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 33, __pyx_L1_error)
18742
  __pyx_builtin_TypeError = __Pyx_GetBuiltinName(__pyx_n_s_TypeError); if (!__pyx_builtin_TypeError) __PYX_ERR(1, 2, __pyx_L1_error)
18743
  __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(2, 945, __pyx_L1_error)
18744
  __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 133, __pyx_L1_error)
 
19118
  __pyx_vtabptr_13triangle_hash_TriangleHash = &__pyx_vtable_13triangle_hash_TriangleHash;
19119
  __pyx_vtable_13triangle_hash_TriangleHash._build_hash = (int (*)(struct __pyx_obj_13triangle_hash_TriangleHash *, __Pyx_memviewslice))__pyx_f_13triangle_hash_12TriangleHash__build_hash;
19120
  __pyx_vtable_13triangle_hash_TriangleHash.query = (PyObject *(*)(struct __pyx_obj_13triangle_hash_TriangleHash *, __Pyx_memviewslice, int __pyx_skip_dispatch))__pyx_f_13triangle_hash_12TriangleHash_query;
19121
+ if (PyType_Ready(&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 11, __pyx_L1_error)
19122
  #if PY_VERSION_HEX < 0x030800B1
19123
  __pyx_type_13triangle_hash_TriangleHash.tp_print = 0;
19124
  #endif
19125
  if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) && likely(!__pyx_type_13triangle_hash_TriangleHash.tp_dictoffset && __pyx_type_13triangle_hash_TriangleHash.tp_getattro == PyObject_GenericGetAttr)) {
19126
  __pyx_type_13triangle_hash_TriangleHash.tp_getattro = __Pyx_PyObject_GenericGetAttr;
19127
  }
19128
+ if (__Pyx_SetVtable(__pyx_type_13triangle_hash_TriangleHash.tp_dict, __pyx_vtabptr_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 11, __pyx_L1_error)
19129
+ if (PyObject_SetAttr(__pyx_m, __pyx_n_s_TriangleHash, (PyObject *)&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 11, __pyx_L1_error)
19130
+ if (__Pyx_setup_reduce((PyObject*)&__pyx_type_13triangle_hash_TriangleHash) < 0) __PYX_ERR(0, 11, __pyx_L1_error)
19131
  __pyx_ptype_13triangle_hash_TriangleHash = &__pyx_type_13triangle_hash_TriangleHash;
19132
  __pyx_vtabptr_array = &__pyx_vtable_array;
19133
  __pyx_vtable_array.get_memview = (PyObject *(*)(struct __pyx_array_obj *))__pyx_array_get_memview;
 
19468
  *
19469
  * # distutils: language=c++
19470
  * import numpy as np # <<<<<<<<<<<<<<
19471
+ *
19472
  * cimport cython
19473
  */
19474
  __pyx_t_1 = __Pyx_Import(__pyx_n_s_numpy, 0, -1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 3, __pyx_L1_error)
 
19480
  *
19481
  * # distutils: language=c++ # <<<<<<<<<<<<<<
19482
  * import numpy as np
19483
+ *
19484
  */
19485
  __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 2, __pyx_L1_error)
19486
  __Pyx_GOTREF(__pyx_t_1);
lib/common/libmesh/triangle_hash.pyx CHANGED
@@ -1,10 +1,12 @@
1
 
2
  # distutils: language=c++
3
  import numpy as np
4
- cimport numpy as np
5
  cimport cython
 
 
6
  from libcpp.vector cimport vector
7
- from libc.math cimport floor, ceil
8
 
9
  cdef class TriangleHash:
10
  cdef vector[vector[int]] spatial_hash
 
1
 
2
  # distutils: language=c++
3
  import numpy as np
4
+
5
  cimport cython
6
+ cimport numpy as np
7
+ from libc.math cimport ceil, floor
8
  from libcpp.vector cimport vector
9
+
10
 
11
  cdef class TriangleHash:
12
  cdef vector[vector[int]] spatial_hash
lib/common/libvoxelize/voxelize.c CHANGED
@@ -2115,7 +2115,7 @@ static PyObject *__pyx_tuple__24;
2115
  static PyObject *__pyx_codeobj__25;
2116
  /* Late includes */
2117
 
2118
- /* "voxelize.pyx":12
2119
  * @cython.boundscheck(False) # Deactivate bounds checking
2120
  * @cython.wraparound(False) # Deactivate negative indexing.
2121
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces): # <<<<<<<<<<<<<<
@@ -2138,7 +2138,7 @@ static int __pyx_f_8voxelize_voxelize_mesh_(__Pyx_memviewslice __pyx_v_occ, __Py
2138
  int __pyx_clineno = 0;
2139
  __Pyx_RefNannySetupContext("voxelize_mesh_", 0);
2140
 
2141
- /* "voxelize.pyx":13
2142
  * @cython.wraparound(False) # Deactivate negative indexing.
2143
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces):
2144
  * assert(faces.shape[1] == 3) # <<<<<<<<<<<<<<
@@ -2149,12 +2149,12 @@ static int __pyx_f_8voxelize_voxelize_mesh_(__Pyx_memviewslice __pyx_v_occ, __Py
2149
  if (unlikely(!Py_OptimizeFlag)) {
2150
  if (unlikely(!(((__pyx_v_faces.shape[1]) == 3) != 0))) {
2151
  PyErr_SetNone(PyExc_AssertionError);
2152
- __PYX_ERR(0, 13, __pyx_L1_error)
2153
  }
2154
  }
2155
  #endif
2156
 
2157
- /* "voxelize.pyx":14
2158
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces):
2159
  * assert(faces.shape[1] == 3)
2160
  * assert(faces.shape[2] == 3) # <<<<<<<<<<<<<<
@@ -2165,12 +2165,12 @@ static int __pyx_f_8voxelize_voxelize_mesh_(__Pyx_memviewslice __pyx_v_occ, __Py
2165
  if (unlikely(!Py_OptimizeFlag)) {
2166
  if (unlikely(!(((__pyx_v_faces.shape[2]) == 3) != 0))) {
2167
  PyErr_SetNone(PyExc_AssertionError);
2168
- __PYX_ERR(0, 14, __pyx_L1_error)
2169
  }
2170
  }
2171
  #endif
2172
 
2173
- /* "voxelize.pyx":16
2174
  * assert(faces.shape[2] == 3)
2175
  *
2176
  * n_faces = faces.shape[0] # <<<<<<<<<<<<<<
@@ -2179,7 +2179,7 @@ static int __pyx_f_8voxelize_voxelize_mesh_(__Pyx_memviewslice __pyx_v_occ, __Py
2179
  */
2180
  __pyx_v_n_faces = (__pyx_v_faces.shape[0]);
2181
 
2182
- /* "voxelize.pyx":18
2183
  * n_faces = faces.shape[0]
2184
  * cdef int i
2185
  * for i in range(n_faces): # <<<<<<<<<<<<<<
@@ -2191,7 +2191,7 @@ static int __pyx_f_8voxelize_voxelize_mesh_(__Pyx_memviewslice __pyx_v_occ, __Py
2191
  for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) {
2192
  __pyx_v_i = __pyx_t_3;
2193
 
2194
- /* "voxelize.pyx":19
2195
  * cdef int i
2196
  * for i in range(n_faces):
2197
  * voxelize_triangle_(occ, faces[i]) # <<<<<<<<<<<<<<
@@ -2221,7 +2221,7 @@ __pyx_t_4.strides[1] = __pyx_v_faces.strides[2];
2221
  __pyx_t_4.data = NULL;
2222
  }
2223
 
2224
- /* "voxelize.pyx":12
2225
  * @cython.boundscheck(False) # Deactivate bounds checking
2226
  * @cython.wraparound(False) # Deactivate negative indexing.
2227
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces): # <<<<<<<<<<<<<<
@@ -2275,11 +2275,11 @@ static PyObject *__pyx_pw_8voxelize_1voxelize_mesh_(PyObject *__pyx_self, PyObje
2275
  case 1:
2276
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_faces)) != 0)) kw_args--;
2277
  else {
2278
- __Pyx_RaiseArgtupleInvalid("voxelize_mesh_", 1, 2, 2, 1); __PYX_ERR(0, 12, __pyx_L3_error)
2279
  }
2280
  }
2281
  if (unlikely(kw_args > 0)) {
2282
- if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "voxelize_mesh_") < 0)) __PYX_ERR(0, 12, __pyx_L3_error)
2283
  }
2284
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2285
  goto __pyx_L5_argtuple_error;
@@ -2287,12 +2287,12 @@ static PyObject *__pyx_pw_8voxelize_1voxelize_mesh_(PyObject *__pyx_self, PyObje
2287
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2288
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2289
  }
2290
- __pyx_v_occ = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_occ.memview)) __PYX_ERR(0, 12, __pyx_L3_error)
2291
- __pyx_v_faces = __Pyx_PyObject_to_MemoryviewSlice_d_d_dc_float(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_faces.memview)) __PYX_ERR(0, 12, __pyx_L3_error)
2292
  }
2293
  goto __pyx_L4_argument_unpacking_done;
2294
  __pyx_L5_argtuple_error:;
2295
- __Pyx_RaiseArgtupleInvalid("voxelize_mesh_", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 12, __pyx_L3_error)
2296
  __pyx_L3_error:;
2297
  __Pyx_AddTraceback("voxelize.voxelize_mesh_", __pyx_clineno, __pyx_lineno, __pyx_filename);
2298
  __Pyx_RefNannyFinishContext();
@@ -2314,9 +2314,9 @@ static PyObject *__pyx_pf_8voxelize_voxelize_mesh_(CYTHON_UNUSED PyObject *__pyx
2314
  int __pyx_clineno = 0;
2315
  __Pyx_RefNannySetupContext("voxelize_mesh_", 0);
2316
  __Pyx_XDECREF(__pyx_r);
2317
- if (unlikely(!__pyx_v_occ.memview)) { __Pyx_RaiseUnboundLocalError("occ"); __PYX_ERR(0, 12, __pyx_L1_error) }
2318
- if (unlikely(!__pyx_v_faces.memview)) { __Pyx_RaiseUnboundLocalError("faces"); __PYX_ERR(0, 12, __pyx_L1_error) }
2319
- __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_f_8voxelize_voxelize_mesh_(__pyx_v_occ, __pyx_v_faces, 0)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 12, __pyx_L1_error)
2320
  __Pyx_GOTREF(__pyx_t_1);
2321
  __pyx_r = __pyx_t_1;
2322
  __pyx_t_1 = 0;
@@ -2335,7 +2335,7 @@ static PyObject *__pyx_pf_8voxelize_voxelize_mesh_(CYTHON_UNUSED PyObject *__pyx
2335
  return __pyx_r;
2336
  }
2337
 
2338
- /* "voxelize.pyx":24
2339
  * @cython.boundscheck(False) # Deactivate bounds checking
2340
  * @cython.wraparound(False) # Deactivate negative indexing.
2341
  * cpdef int voxelize_triangle_(bint[:, :, :] occupancies, float[:, ::1] triverts): # <<<<<<<<<<<<<<
@@ -2382,7 +2382,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2382
  Py_ssize_t __pyx_t_25;
2383
  __Pyx_RefNannySetupContext("voxelize_triangle_", 0);
2384
 
2385
- /* "voxelize.pyx":32
2386
  * cdef bint intersection
2387
  *
2388
  * boxhalfsize[:] = (0.5, 0.5, 0.5) # <<<<<<<<<<<<<<
@@ -2397,7 +2397,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2397
  (__pyx_t_1[1]) = __pyx_t_3;
2398
  (__pyx_t_1[2]) = __pyx_t_4;
2399
 
2400
- /* "voxelize.pyx":34
2401
  * boxhalfsize[:] = (0.5, 0.5, 0.5)
2402
  *
2403
  * for i in range(3): # <<<<<<<<<<<<<<
@@ -2407,7 +2407,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2407
  for (__pyx_t_5 = 0; __pyx_t_5 < 3; __pyx_t_5+=1) {
2408
  __pyx_v_i = __pyx_t_5;
2409
 
2410
- /* "voxelize.pyx":36
2411
  * for i in range(3):
2412
  * bbox_min[i] = <int> (
2413
  * min(triverts[0, i], triverts[1, i], triverts[2, i]) # <<<<<<<<<<<<<<
@@ -2435,7 +2435,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2435
  __pyx_t_11 = __pyx_t_10;
2436
  }
2437
 
2438
- /* "voxelize.pyx":35
2439
  *
2440
  * for i in range(3):
2441
  * bbox_min[i] = <int> ( # <<<<<<<<<<<<<<
@@ -2444,7 +2444,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2444
  */
2445
  (__pyx_v_bbox_min[__pyx_v_i]) = ((int)__pyx_t_11);
2446
 
2447
- /* "voxelize.pyx":38
2448
  * min(triverts[0, i], triverts[1, i], triverts[2, i])
2449
  * )
2450
  * bbox_min[i] = min(max(bbox_min[i], 0), occupancies.shape[i] - 1) # <<<<<<<<<<<<<<
@@ -2468,7 +2468,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2468
  (__pyx_v_bbox_min[__pyx_v_i]) = __pyx_t_16;
2469
  }
2470
 
2471
- /* "voxelize.pyx":40
2472
  * bbox_min[i] = min(max(bbox_min[i], 0), occupancies.shape[i] - 1)
2473
  *
2474
  * for i in range(3): # <<<<<<<<<<<<<<
@@ -2478,7 +2478,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2478
  for (__pyx_t_5 = 0; __pyx_t_5 < 3; __pyx_t_5+=1) {
2479
  __pyx_v_i = __pyx_t_5;
2480
 
2481
- /* "voxelize.pyx":42
2482
  * for i in range(3):
2483
  * bbox_max[i] = <int> (
2484
  * max(triverts[0, i], triverts[1, i], triverts[2, i]) # <<<<<<<<<<<<<<
@@ -2506,7 +2506,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2506
  __pyx_t_10 = __pyx_t_9;
2507
  }
2508
 
2509
- /* "voxelize.pyx":41
2510
  *
2511
  * for i in range(3):
2512
  * bbox_max[i] = <int> ( # <<<<<<<<<<<<<<
@@ -2515,7 +2515,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2515
  */
2516
  (__pyx_v_bbox_max[__pyx_v_i]) = ((int)__pyx_t_10);
2517
 
2518
- /* "voxelize.pyx":44
2519
  * max(triverts[0, i], triverts[1, i], triverts[2, i])
2520
  * )
2521
  * bbox_max[i] = min(max(bbox_max[i], 0), occupancies.shape[i] - 1) # <<<<<<<<<<<<<<
@@ -2539,7 +2539,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2539
  (__pyx_v_bbox_max[__pyx_v_i]) = __pyx_t_12;
2540
  }
2541
 
2542
- /* "voxelize.pyx":46
2543
  * bbox_max[i] = min(max(bbox_max[i], 0), occupancies.shape[i] - 1)
2544
  *
2545
  * for i in range(bbox_min[0], bbox_max[0] + 1): # <<<<<<<<<<<<<<
@@ -2551,7 +2551,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2551
  for (__pyx_t_5 = (__pyx_v_bbox_min[0]); __pyx_t_5 < __pyx_t_15; __pyx_t_5+=1) {
2552
  __pyx_v_i = __pyx_t_5;
2553
 
2554
- /* "voxelize.pyx":47
2555
  *
2556
  * for i in range(bbox_min[0], bbox_max[0] + 1):
2557
  * for j in range(bbox_min[1], bbox_max[1] + 1): # <<<<<<<<<<<<<<
@@ -2563,7 +2563,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2563
  for (__pyx_t_14 = (__pyx_v_bbox_min[1]); __pyx_t_14 < __pyx_t_18; __pyx_t_14+=1) {
2564
  __pyx_v_j = __pyx_t_14;
2565
 
2566
- /* "voxelize.pyx":48
2567
  * for i in range(bbox_min[0], bbox_max[0] + 1):
2568
  * for j in range(bbox_min[1], bbox_max[1] + 1):
2569
  * for k in range(bbox_min[2], bbox_max[2] + 1): # <<<<<<<<<<<<<<
@@ -2575,7 +2575,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2575
  for (__pyx_t_21 = (__pyx_v_bbox_min[2]); __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) {
2576
  __pyx_v_k = __pyx_t_21;
2577
 
2578
- /* "voxelize.pyx":49
2579
  * for j in range(bbox_min[1], bbox_max[1] + 1):
2580
  * for k in range(bbox_min[2], bbox_max[2] + 1):
2581
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5) # <<<<<<<<<<<<<<
@@ -2590,7 +2590,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2590
  (__pyx_t_1[1]) = __pyx_t_3;
2591
  (__pyx_t_1[2]) = __pyx_t_2;
2592
 
2593
- /* "voxelize.pyx":51
2594
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5)
2595
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2596
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) # <<<<<<<<<<<<<<
@@ -2604,7 +2604,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2604
  __pyx_t_24 = 2;
2605
  __pyx_t_25 = 0;
2606
 
2607
- /* "voxelize.pyx":50
2608
  * for k in range(bbox_min[2], bbox_max[2] + 1):
2609
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5)
2610
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
@@ -2613,7 +2613,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2613
  */
2614
  __pyx_v_intersection = triBoxOverlap((&(__pyx_v_boxcenter[0])), (&(__pyx_v_boxhalfsize[0])), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_6 * __pyx_v_triverts.strides[0]) )) + __pyx_t_7)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_22 * __pyx_v_triverts.strides[0]) )) + __pyx_t_23)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_24 * __pyx_v_triverts.strides[0]) )) + __pyx_t_25)) )))));
2615
 
2616
- /* "voxelize.pyx":52
2617
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2618
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0])
2619
  * occupancies[i, j, k] |= intersection # <<<<<<<<<<<<<<
@@ -2628,7 +2628,7 @@ static int __pyx_f_8voxelize_voxelize_triangle_(__Pyx_memviewslice __pyx_v_occup
2628
  }
2629
  }
2630
 
2631
- /* "voxelize.pyx":24
2632
  * @cython.boundscheck(False) # Deactivate bounds checking
2633
  * @cython.wraparound(False) # Deactivate negative indexing.
2634
  * cpdef int voxelize_triangle_(bint[:, :, :] occupancies, float[:, ::1] triverts): # <<<<<<<<<<<<<<
@@ -2676,11 +2676,11 @@ static PyObject *__pyx_pw_8voxelize_3voxelize_triangle_(PyObject *__pyx_self, Py
2676
  case 1:
2677
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_triverts)) != 0)) kw_args--;
2678
  else {
2679
- __Pyx_RaiseArgtupleInvalid("voxelize_triangle_", 1, 2, 2, 1); __PYX_ERR(0, 24, __pyx_L3_error)
2680
  }
2681
  }
2682
  if (unlikely(kw_args > 0)) {
2683
- if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "voxelize_triangle_") < 0)) __PYX_ERR(0, 24, __pyx_L3_error)
2684
  }
2685
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2686
  goto __pyx_L5_argtuple_error;
@@ -2688,12 +2688,12 @@ static PyObject *__pyx_pw_8voxelize_3voxelize_triangle_(PyObject *__pyx_self, Py
2688
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2689
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2690
  }
2691
- __pyx_v_occupancies = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_occupancies.memview)) __PYX_ERR(0, 24, __pyx_L3_error)
2692
- __pyx_v_triverts = __Pyx_PyObject_to_MemoryviewSlice_d_dc_float(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_triverts.memview)) __PYX_ERR(0, 24, __pyx_L3_error)
2693
  }
2694
  goto __pyx_L4_argument_unpacking_done;
2695
  __pyx_L5_argtuple_error:;
2696
- __Pyx_RaiseArgtupleInvalid("voxelize_triangle_", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 24, __pyx_L3_error)
2697
  __pyx_L3_error:;
2698
  __Pyx_AddTraceback("voxelize.voxelize_triangle_", __pyx_clineno, __pyx_lineno, __pyx_filename);
2699
  __Pyx_RefNannyFinishContext();
@@ -2715,9 +2715,9 @@ static PyObject *__pyx_pf_8voxelize_2voxelize_triangle_(CYTHON_UNUSED PyObject *
2715
  int __pyx_clineno = 0;
2716
  __Pyx_RefNannySetupContext("voxelize_triangle_", 0);
2717
  __Pyx_XDECREF(__pyx_r);
2718
- if (unlikely(!__pyx_v_occupancies.memview)) { __Pyx_RaiseUnboundLocalError("occupancies"); __PYX_ERR(0, 24, __pyx_L1_error) }
2719
- if (unlikely(!__pyx_v_triverts.memview)) { __Pyx_RaiseUnboundLocalError("triverts"); __PYX_ERR(0, 24, __pyx_L1_error) }
2720
- __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_f_8voxelize_voxelize_triangle_(__pyx_v_occupancies, __pyx_v_triverts, 0)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 24, __pyx_L1_error)
2721
  __Pyx_GOTREF(__pyx_t_1);
2722
  __pyx_r = __pyx_t_1;
2723
  __pyx_t_1 = 0;
@@ -2736,7 +2736,7 @@ static PyObject *__pyx_pf_8voxelize_2voxelize_triangle_(CYTHON_UNUSED PyObject *
2736
  return __pyx_r;
2737
  }
2738
 
2739
- /* "voxelize.pyx":57
2740
  * @cython.boundscheck(False) # Deactivate bounds checking
2741
  * @cython.wraparound(False) # Deactivate negative indexing.
2742
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts): # <<<<<<<<<<<<<<
@@ -2762,7 +2762,7 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2762
  int __pyx_clineno = 0;
2763
  __Pyx_RefNannySetupContext("test_triangle_aabb", 0);
2764
 
2765
- /* "voxelize.pyx":58
2766
  * @cython.wraparound(False) # Deactivate negative indexing.
2767
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts):
2768
  * assert(boxcenter.shape[0] == 3) # <<<<<<<<<<<<<<
@@ -2773,12 +2773,12 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2773
  if (unlikely(!Py_OptimizeFlag)) {
2774
  if (unlikely(!(((__pyx_v_boxcenter.shape[0]) == 3) != 0))) {
2775
  PyErr_SetNone(PyExc_AssertionError);
2776
- __PYX_ERR(0, 58, __pyx_L1_error)
2777
  }
2778
  }
2779
  #endif
2780
 
2781
- /* "voxelize.pyx":59
2782
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts):
2783
  * assert(boxcenter.shape[0] == 3)
2784
  * assert(boxhalfsize.shape[0] == 3) # <<<<<<<<<<<<<<
@@ -2789,12 +2789,12 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2789
  if (unlikely(!Py_OptimizeFlag)) {
2790
  if (unlikely(!(((__pyx_v_boxhalfsize.shape[0]) == 3) != 0))) {
2791
  PyErr_SetNone(PyExc_AssertionError);
2792
- __PYX_ERR(0, 59, __pyx_L1_error)
2793
  }
2794
  }
2795
  #endif
2796
 
2797
- /* "voxelize.pyx":60
2798
  * assert(boxcenter.shape[0] == 3)
2799
  * assert(boxhalfsize.shape[0] == 3)
2800
  * assert(triverts.shape[0] == triverts.shape[1] == 3) # <<<<<<<<<<<<<<
@@ -2809,12 +2809,12 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2809
  }
2810
  if (unlikely(!(__pyx_t_1 != 0))) {
2811
  PyErr_SetNone(PyExc_AssertionError);
2812
- __PYX_ERR(0, 60, __pyx_L1_error)
2813
  }
2814
  }
2815
  #endif
2816
 
2817
- /* "voxelize.pyx":64
2818
  * # print(triverts)
2819
  * # Call functions
2820
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
@@ -2824,7 +2824,7 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2824
  __pyx_t_2 = 0;
2825
  __pyx_t_3 = 0;
2826
 
2827
- /* "voxelize.pyx":65
2828
  * # Call functions
2829
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2830
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) # <<<<<<<<<<<<<<
@@ -2837,7 +2837,7 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2837
  __pyx_t_8 = 2;
2838
  __pyx_t_9 = 0;
2839
 
2840
- /* "voxelize.pyx":64
2841
  * # print(triverts)
2842
  * # Call functions
2843
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
@@ -2846,7 +2846,7 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2846
  */
2847
  __pyx_v_result = triBoxOverlap((&(*((float *) ( /* dim=0 */ ((char *) (((float *) __pyx_v_boxcenter.data) + __pyx_t_2)) )))), (&(*((float *) ( /* dim=0 */ ((char *) (((float *) __pyx_v_boxhalfsize.data) + __pyx_t_3)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_4 * __pyx_v_triverts.strides[0]) )) + __pyx_t_5)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_6 * __pyx_v_triverts.strides[0]) )) + __pyx_t_7)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_8 * __pyx_v_triverts.strides[0]) )) + __pyx_t_9)) )))));
2848
 
2849
- /* "voxelize.pyx":66
2850
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2851
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0])
2852
  * return result # <<<<<<<<<<<<<<
@@ -2854,7 +2854,7 @@ static int __pyx_f_8voxelize_test_triangle_aabb(__Pyx_memviewslice __pyx_v_boxce
2854
  __pyx_r = __pyx_v_result;
2855
  goto __pyx_L0;
2856
 
2857
- /* "voxelize.pyx":57
2858
  * @cython.boundscheck(False) # Deactivate bounds checking
2859
  * @cython.wraparound(False) # Deactivate negative indexing.
2860
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts): # <<<<<<<<<<<<<<
@@ -16757,7 +16757,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = {
16757
  {0, 0, 0, 0, 0, 0, 0}
16758
  };
16759
  static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) {
16760
- __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 18, __pyx_L1_error)
16761
  __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 133, __pyx_L1_error)
16762
  __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 148, __pyx_L1_error)
16763
  __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 151, __pyx_L1_error)
@@ -17377,8 +17377,8 @@ if (!__Pyx_RefNanny) {
17377
 
17378
  /* "voxelize.pyx":1
17379
  * cimport cython # <<<<<<<<<<<<<<
17380
- * from libc.math cimport floor, ceil
17381
  * from cython.view cimport array as cvarray
 
17382
  */
17383
  __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error)
17384
  __Pyx_GOTREF(__pyx_t_1);
 
2115
  static PyObject *__pyx_codeobj__25;
2116
  /* Late includes */
2117
 
2118
+ /* "voxelize.pyx":13
2119
  * @cython.boundscheck(False) # Deactivate bounds checking
2120
  * @cython.wraparound(False) # Deactivate negative indexing.
2121
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces): # <<<<<<<<<<<<<<
 
2138
  int __pyx_clineno = 0;
2139
  __Pyx_RefNannySetupContext("voxelize_mesh_", 0);
2140
 
2141
+ /* "voxelize.pyx":14
2142
  * @cython.wraparound(False) # Deactivate negative indexing.
2143
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces):
2144
  * assert(faces.shape[1] == 3) # <<<<<<<<<<<<<<
 
2149
  if (unlikely(!Py_OptimizeFlag)) {
2150
  if (unlikely(!(((__pyx_v_faces.shape[1]) == 3) != 0))) {
2151
  PyErr_SetNone(PyExc_AssertionError);
2152
+ __PYX_ERR(0, 14, __pyx_L1_error)
2153
  }
2154
  }
2155
  #endif
2156
 
2157
+ /* "voxelize.pyx":15
2158
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces):
2159
  * assert(faces.shape[1] == 3)
2160
  * assert(faces.shape[2] == 3) # <<<<<<<<<<<<<<
 
2165
  if (unlikely(!Py_OptimizeFlag)) {
2166
  if (unlikely(!(((__pyx_v_faces.shape[2]) == 3) != 0))) {
2167
  PyErr_SetNone(PyExc_AssertionError);
2168
+ __PYX_ERR(0, 15, __pyx_L1_error)
2169
  }
2170
  }
2171
  #endif
2172
 
2173
+ /* "voxelize.pyx":17
2174
  * assert(faces.shape[2] == 3)
2175
  *
2176
  * n_faces = faces.shape[0] # <<<<<<<<<<<<<<
 
2179
  */
2180
  __pyx_v_n_faces = (__pyx_v_faces.shape[0]);
2181
 
2182
+ /* "voxelize.pyx":19
2183
  * n_faces = faces.shape[0]
2184
  * cdef int i
2185
  * for i in range(n_faces): # <<<<<<<<<<<<<<
 
2191
  for (__pyx_t_3 = 0; __pyx_t_3 < __pyx_t_2; __pyx_t_3+=1) {
2192
  __pyx_v_i = __pyx_t_3;
2193
 
2194
+ /* "voxelize.pyx":20
2195
  * cdef int i
2196
  * for i in range(n_faces):
2197
  * voxelize_triangle_(occ, faces[i]) # <<<<<<<<<<<<<<
 
2221
  __pyx_t_4.data = NULL;
2222
  }
2223
 
2224
+ /* "voxelize.pyx":13
2225
  * @cython.boundscheck(False) # Deactivate bounds checking
2226
  * @cython.wraparound(False) # Deactivate negative indexing.
2227
  * cpdef int voxelize_mesh_(bint[:, :, :] occ, float[:, :, ::1] faces): # <<<<<<<<<<<<<<
 
2275
  case 1:
2276
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_faces)) != 0)) kw_args--;
2277
  else {
2278
+ __Pyx_RaiseArgtupleInvalid("voxelize_mesh_", 1, 2, 2, 1); __PYX_ERR(0, 13, __pyx_L3_error)
2279
  }
2280
  }
2281
  if (unlikely(kw_args > 0)) {
2282
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "voxelize_mesh_") < 0)) __PYX_ERR(0, 13, __pyx_L3_error)
2283
  }
2284
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2285
  goto __pyx_L5_argtuple_error;
 
2287
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2288
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2289
  }
2290
+ __pyx_v_occ = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_occ.memview)) __PYX_ERR(0, 13, __pyx_L3_error)
2291
+ __pyx_v_faces = __Pyx_PyObject_to_MemoryviewSlice_d_d_dc_float(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_faces.memview)) __PYX_ERR(0, 13, __pyx_L3_error)
2292
  }
2293
  goto __pyx_L4_argument_unpacking_done;
2294
  __pyx_L5_argtuple_error:;
2295
+ __Pyx_RaiseArgtupleInvalid("voxelize_mesh_", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 13, __pyx_L3_error)
2296
  __pyx_L3_error:;
2297
  __Pyx_AddTraceback("voxelize.voxelize_mesh_", __pyx_clineno, __pyx_lineno, __pyx_filename);
2298
  __Pyx_RefNannyFinishContext();
 
2314
  int __pyx_clineno = 0;
2315
  __Pyx_RefNannySetupContext("voxelize_mesh_", 0);
2316
  __Pyx_XDECREF(__pyx_r);
2317
+ if (unlikely(!__pyx_v_occ.memview)) { __Pyx_RaiseUnboundLocalError("occ"); __PYX_ERR(0, 13, __pyx_L1_error) }
2318
+ if (unlikely(!__pyx_v_faces.memview)) { __Pyx_RaiseUnboundLocalError("faces"); __PYX_ERR(0, 13, __pyx_L1_error) }
2319
+ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_f_8voxelize_voxelize_mesh_(__pyx_v_occ, __pyx_v_faces, 0)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 13, __pyx_L1_error)
2320
  __Pyx_GOTREF(__pyx_t_1);
2321
  __pyx_r = __pyx_t_1;
2322
  __pyx_t_1 = 0;
 
2335
  return __pyx_r;
2336
  }
2337
 
2338
+ /* "voxelize.pyx":25
2339
  * @cython.boundscheck(False) # Deactivate bounds checking
2340
  * @cython.wraparound(False) # Deactivate negative indexing.
2341
  * cpdef int voxelize_triangle_(bint[:, :, :] occupancies, float[:, ::1] triverts): # <<<<<<<<<<<<<<
 
2382
  Py_ssize_t __pyx_t_25;
2383
  __Pyx_RefNannySetupContext("voxelize_triangle_", 0);
2384
 
2385
+ /* "voxelize.pyx":33
2386
  * cdef bint intersection
2387
  *
2388
  * boxhalfsize[:] = (0.5, 0.5, 0.5) # <<<<<<<<<<<<<<
 
2397
  (__pyx_t_1[1]) = __pyx_t_3;
2398
  (__pyx_t_1[2]) = __pyx_t_4;
2399
 
2400
+ /* "voxelize.pyx":35
2401
  * boxhalfsize[:] = (0.5, 0.5, 0.5)
2402
  *
2403
  * for i in range(3): # <<<<<<<<<<<<<<
 
2407
  for (__pyx_t_5 = 0; __pyx_t_5 < 3; __pyx_t_5+=1) {
2408
  __pyx_v_i = __pyx_t_5;
2409
 
2410
+ /* "voxelize.pyx":37
2411
  * for i in range(3):
2412
  * bbox_min[i] = <int> (
2413
  * min(triverts[0, i], triverts[1, i], triverts[2, i]) # <<<<<<<<<<<<<<
 
2435
  __pyx_t_11 = __pyx_t_10;
2436
  }
2437
 
2438
+ /* "voxelize.pyx":36
2439
  *
2440
  * for i in range(3):
2441
  * bbox_min[i] = <int> ( # <<<<<<<<<<<<<<
 
2444
  */
2445
  (__pyx_v_bbox_min[__pyx_v_i]) = ((int)__pyx_t_11);
2446
 
2447
+ /* "voxelize.pyx":39
2448
  * min(triverts[0, i], triverts[1, i], triverts[2, i])
2449
  * )
2450
  * bbox_min[i] = min(max(bbox_min[i], 0), occupancies.shape[i] - 1) # <<<<<<<<<<<<<<
 
2468
  (__pyx_v_bbox_min[__pyx_v_i]) = __pyx_t_16;
2469
  }
2470
 
2471
+ /* "voxelize.pyx":41
2472
  * bbox_min[i] = min(max(bbox_min[i], 0), occupancies.shape[i] - 1)
2473
  *
2474
  * for i in range(3): # <<<<<<<<<<<<<<
 
2478
  for (__pyx_t_5 = 0; __pyx_t_5 < 3; __pyx_t_5+=1) {
2479
  __pyx_v_i = __pyx_t_5;
2480
 
2481
+ /* "voxelize.pyx":43
2482
  * for i in range(3):
2483
  * bbox_max[i] = <int> (
2484
  * max(triverts[0, i], triverts[1, i], triverts[2, i]) # <<<<<<<<<<<<<<
 
2506
  __pyx_t_10 = __pyx_t_9;
2507
  }
2508
 
2509
+ /* "voxelize.pyx":42
2510
  *
2511
  * for i in range(3):
2512
  * bbox_max[i] = <int> ( # <<<<<<<<<<<<<<
 
2515
  */
2516
  (__pyx_v_bbox_max[__pyx_v_i]) = ((int)__pyx_t_10);
2517
 
2518
+ /* "voxelize.pyx":45
2519
  * max(triverts[0, i], triverts[1, i], triverts[2, i])
2520
  * )
2521
  * bbox_max[i] = min(max(bbox_max[i], 0), occupancies.shape[i] - 1) # <<<<<<<<<<<<<<
 
2539
  (__pyx_v_bbox_max[__pyx_v_i]) = __pyx_t_12;
2540
  }
2541
 
2542
+ /* "voxelize.pyx":47
2543
  * bbox_max[i] = min(max(bbox_max[i], 0), occupancies.shape[i] - 1)
2544
  *
2545
  * for i in range(bbox_min[0], bbox_max[0] + 1): # <<<<<<<<<<<<<<
 
2551
  for (__pyx_t_5 = (__pyx_v_bbox_min[0]); __pyx_t_5 < __pyx_t_15; __pyx_t_5+=1) {
2552
  __pyx_v_i = __pyx_t_5;
2553
 
2554
+ /* "voxelize.pyx":48
2555
  *
2556
  * for i in range(bbox_min[0], bbox_max[0] + 1):
2557
  * for j in range(bbox_min[1], bbox_max[1] + 1): # <<<<<<<<<<<<<<
 
2563
  for (__pyx_t_14 = (__pyx_v_bbox_min[1]); __pyx_t_14 < __pyx_t_18; __pyx_t_14+=1) {
2564
  __pyx_v_j = __pyx_t_14;
2565
 
2566
+ /* "voxelize.pyx":49
2567
  * for i in range(bbox_min[0], bbox_max[0] + 1):
2568
  * for j in range(bbox_min[1], bbox_max[1] + 1):
2569
  * for k in range(bbox_min[2], bbox_max[2] + 1): # <<<<<<<<<<<<<<
 
2575
  for (__pyx_t_21 = (__pyx_v_bbox_min[2]); __pyx_t_21 < __pyx_t_20; __pyx_t_21+=1) {
2576
  __pyx_v_k = __pyx_t_21;
2577
 
2578
+ /* "voxelize.pyx":50
2579
  * for j in range(bbox_min[1], bbox_max[1] + 1):
2580
  * for k in range(bbox_min[2], bbox_max[2] + 1):
2581
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5) # <<<<<<<<<<<<<<
 
2590
  (__pyx_t_1[1]) = __pyx_t_3;
2591
  (__pyx_t_1[2]) = __pyx_t_2;
2592
 
2593
+ /* "voxelize.pyx":52
2594
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5)
2595
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2596
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) # <<<<<<<<<<<<<<
 
2604
  __pyx_t_24 = 2;
2605
  __pyx_t_25 = 0;
2606
 
2607
+ /* "voxelize.pyx":51
2608
  * for k in range(bbox_min[2], bbox_max[2] + 1):
2609
  * boxcenter[:] = (i + 0.5, j + 0.5, k + 0.5)
2610
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
 
2613
  */
2614
  __pyx_v_intersection = triBoxOverlap((&(__pyx_v_boxcenter[0])), (&(__pyx_v_boxhalfsize[0])), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_6 * __pyx_v_triverts.strides[0]) )) + __pyx_t_7)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_22 * __pyx_v_triverts.strides[0]) )) + __pyx_t_23)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_24 * __pyx_v_triverts.strides[0]) )) + __pyx_t_25)) )))));
2615
 
2616
+ /* "voxelize.pyx":53
2617
  * intersection = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2618
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0])
2619
  * occupancies[i, j, k] |= intersection # <<<<<<<<<<<<<<
 
2628
  }
2629
  }
2630
 
2631
+ /* "voxelize.pyx":25
2632
  * @cython.boundscheck(False) # Deactivate bounds checking
2633
  * @cython.wraparound(False) # Deactivate negative indexing.
2634
  * cpdef int voxelize_triangle_(bint[:, :, :] occupancies, float[:, ::1] triverts): # <<<<<<<<<<<<<<
 
2676
  case 1:
2677
  if (likely((values[1] = __Pyx_PyDict_GetItemStr(__pyx_kwds, __pyx_n_s_triverts)) != 0)) kw_args--;
2678
  else {
2679
+ __Pyx_RaiseArgtupleInvalid("voxelize_triangle_", 1, 2, 2, 1); __PYX_ERR(0, 25, __pyx_L3_error)
2680
  }
2681
  }
2682
  if (unlikely(kw_args > 0)) {
2683
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "voxelize_triangle_") < 0)) __PYX_ERR(0, 25, __pyx_L3_error)
2684
  }
2685
  } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
2686
  goto __pyx_L5_argtuple_error;
 
2688
  values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
2689
  values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
2690
  }
2691
+ __pyx_v_occupancies = __Pyx_PyObject_to_MemoryviewSlice_dsdsds_int(values[0], PyBUF_WRITABLE); if (unlikely(!__pyx_v_occupancies.memview)) __PYX_ERR(0, 25, __pyx_L3_error)
2692
+ __pyx_v_triverts = __Pyx_PyObject_to_MemoryviewSlice_d_dc_float(values[1], PyBUF_WRITABLE); if (unlikely(!__pyx_v_triverts.memview)) __PYX_ERR(0, 25, __pyx_L3_error)
2693
  }
2694
  goto __pyx_L4_argument_unpacking_done;
2695
  __pyx_L5_argtuple_error:;
2696
+ __Pyx_RaiseArgtupleInvalid("voxelize_triangle_", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); __PYX_ERR(0, 25, __pyx_L3_error)
2697
  __pyx_L3_error:;
2698
  __Pyx_AddTraceback("voxelize.voxelize_triangle_", __pyx_clineno, __pyx_lineno, __pyx_filename);
2699
  __Pyx_RefNannyFinishContext();
 
2715
  int __pyx_clineno = 0;
2716
  __Pyx_RefNannySetupContext("voxelize_triangle_", 0);
2717
  __Pyx_XDECREF(__pyx_r);
2718
+ if (unlikely(!__pyx_v_occupancies.memview)) { __Pyx_RaiseUnboundLocalError("occupancies"); __PYX_ERR(0, 25, __pyx_L1_error) }
2719
+ if (unlikely(!__pyx_v_triverts.memview)) { __Pyx_RaiseUnboundLocalError("triverts"); __PYX_ERR(0, 25, __pyx_L1_error) }
2720
+ __pyx_t_1 = __Pyx_PyInt_From_int(__pyx_f_8voxelize_voxelize_triangle_(__pyx_v_occupancies, __pyx_v_triverts, 0)); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 25, __pyx_L1_error)
2721
  __Pyx_GOTREF(__pyx_t_1);
2722
  __pyx_r = __pyx_t_1;
2723
  __pyx_t_1 = 0;
 
2736
  return __pyx_r;
2737
  }
2738
 
2739
+ /* "voxelize.pyx":58
2740
  * @cython.boundscheck(False) # Deactivate bounds checking
2741
  * @cython.wraparound(False) # Deactivate negative indexing.
2742
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts): # <<<<<<<<<<<<<<
 
2762
  int __pyx_clineno = 0;
2763
  __Pyx_RefNannySetupContext("test_triangle_aabb", 0);
2764
 
2765
+ /* "voxelize.pyx":59
2766
  * @cython.wraparound(False) # Deactivate negative indexing.
2767
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts):
2768
  * assert(boxcenter.shape[0] == 3) # <<<<<<<<<<<<<<
 
2773
  if (unlikely(!Py_OptimizeFlag)) {
2774
  if (unlikely(!(((__pyx_v_boxcenter.shape[0]) == 3) != 0))) {
2775
  PyErr_SetNone(PyExc_AssertionError);
2776
+ __PYX_ERR(0, 59, __pyx_L1_error)
2777
  }
2778
  }
2779
  #endif
2780
 
2781
+ /* "voxelize.pyx":60
2782
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts):
2783
  * assert(boxcenter.shape[0] == 3)
2784
  * assert(boxhalfsize.shape[0] == 3) # <<<<<<<<<<<<<<
 
2789
  if (unlikely(!Py_OptimizeFlag)) {
2790
  if (unlikely(!(((__pyx_v_boxhalfsize.shape[0]) == 3) != 0))) {
2791
  PyErr_SetNone(PyExc_AssertionError);
2792
+ __PYX_ERR(0, 60, __pyx_L1_error)
2793
  }
2794
  }
2795
  #endif
2796
 
2797
+ /* "voxelize.pyx":61
2798
  * assert(boxcenter.shape[0] == 3)
2799
  * assert(boxhalfsize.shape[0] == 3)
2800
  * assert(triverts.shape[0] == triverts.shape[1] == 3) # <<<<<<<<<<<<<<
 
2809
  }
2810
  if (unlikely(!(__pyx_t_1 != 0))) {
2811
  PyErr_SetNone(PyExc_AssertionError);
2812
+ __PYX_ERR(0, 61, __pyx_L1_error)
2813
  }
2814
  }
2815
  #endif
2816
 
2817
+ /* "voxelize.pyx":65
2818
  * # print(triverts)
2819
  * # Call functions
2820
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
 
2824
  __pyx_t_2 = 0;
2825
  __pyx_t_3 = 0;
2826
 
2827
+ /* "voxelize.pyx":66
2828
  * # Call functions
2829
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2830
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0]) # <<<<<<<<<<<<<<
 
2837
  __pyx_t_8 = 2;
2838
  __pyx_t_9 = 0;
2839
 
2840
+ /* "voxelize.pyx":65
2841
  * # print(triverts)
2842
  * # Call functions
2843
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0], # <<<<<<<<<<<<<<
 
2846
  */
2847
  __pyx_v_result = triBoxOverlap((&(*((float *) ( /* dim=0 */ ((char *) (((float *) __pyx_v_boxcenter.data) + __pyx_t_2)) )))), (&(*((float *) ( /* dim=0 */ ((char *) (((float *) __pyx_v_boxhalfsize.data) + __pyx_t_3)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_4 * __pyx_v_triverts.strides[0]) )) + __pyx_t_5)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_6 * __pyx_v_triverts.strides[0]) )) + __pyx_t_7)) )))), (&(*((float *) ( /* dim=1 */ ((char *) (((float *) ( /* dim=0 */ (__pyx_v_triverts.data + __pyx_t_8 * __pyx_v_triverts.strides[0]) )) + __pyx_t_9)) )))));
2848
 
2849
+ /* "voxelize.pyx":67
2850
  * cdef int result = triBoxOverlap(&boxcenter[0], &boxhalfsize[0],
2851
  * &triverts[0, 0], &triverts[1, 0], &triverts[2, 0])
2852
  * return result # <<<<<<<<<<<<<<
 
2854
  __pyx_r = __pyx_v_result;
2855
  goto __pyx_L0;
2856
 
2857
+ /* "voxelize.pyx":58
2858
  * @cython.boundscheck(False) # Deactivate bounds checking
2859
  * @cython.wraparound(False) # Deactivate negative indexing.
2860
  * cdef int test_triangle_aabb(float[::1] boxcenter, float[::1] boxhalfsize, float[:, ::1] triverts): # <<<<<<<<<<<<<<
 
16757
  {0, 0, 0, 0, 0, 0, 0}
16758
  };
16759
  static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) {
16760
+ __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) __PYX_ERR(0, 19, __pyx_L1_error)
16761
  __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) __PYX_ERR(1, 133, __pyx_L1_error)
16762
  __pyx_builtin_MemoryError = __Pyx_GetBuiltinName(__pyx_n_s_MemoryError); if (!__pyx_builtin_MemoryError) __PYX_ERR(1, 148, __pyx_L1_error)
16763
  __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) __PYX_ERR(1, 151, __pyx_L1_error)
 
17377
 
17378
  /* "voxelize.pyx":1
17379
  * cimport cython # <<<<<<<<<<<<<<
 
17380
  * from cython.view cimport array as cvarray
17381
+ * from libc.math cimport ceil, floor
17382
  */
17383
  __pyx_t_1 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error)
17384
  __Pyx_GOTREF(__pyx_t_1);
lib/common/libvoxelize/voxelize.pyx CHANGED
@@ -1,6 +1,7 @@
1
  cimport cython
2
- from libc.math cimport floor, ceil
3
  from cython.view cimport array as cvarray
 
 
4
 
5
  cdef extern from "tribox2.h":
6
  int triBoxOverlap(float boxcenter[3], float boxhalfsize[3],
 
1
  cimport cython
 
2
  from cython.view cimport array as cvarray
3
+ from libc.math cimport ceil, floor
4
+
5
 
6
  cdef extern from "tribox2.h":
7
  int triBoxOverlap(float boxcenter[3], float boxhalfsize[3],
lib/common/local_affine.py CHANGED
@@ -5,13 +5,14 @@
5
  # file that should have been included as part of this package.
6
 
7
  import torch
8
- import trimesh
9
  import torch.nn as nn
10
- from tqdm import tqdm
11
- from pytorch3d.structures import Meshes
12
  from pytorch3d.loss import chamfer_distance
13
- from lib.dataset.mesh_util import update_mesh_shape_prior_losses
 
 
14
  from lib.common.train_util import init_loss
 
15
 
16
 
17
  # reference: https://github.com/wuhaozhe/pytorch-nicp
@@ -84,11 +85,9 @@ def register(target_mesh, src_mesh, device, verbose=True):
84
  src_mesh.verts_padded().shape[0], src_mesh.edges_packed()
85
  ).to(device)
86
 
87
- optimizer_cloth = torch.optim.Adam(
88
- [{
89
- 'params': local_affine_model.parameters()
90
- }], lr=1e-2, amsgrad=True
91
- )
92
  scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
93
  optimizer_cloth,
94
  mode="min",
@@ -104,7 +103,7 @@ def register(target_mesh, src_mesh, device, verbose=True):
104
  loop_cloth = tqdm(range(100))
105
  else:
106
  loop_cloth = range(100)
107
-
108
  for i in loop_cloth:
109
 
110
  optimizer_cloth.zero_grad()
 
5
  # file that should have been included as part of this package.
6
 
7
  import torch
 
8
  import torch.nn as nn
9
+ import trimesh
 
10
  from pytorch3d.loss import chamfer_distance
11
+ from pytorch3d.structures import Meshes
12
+ from tqdm import tqdm
13
+
14
  from lib.common.train_util import init_loss
15
+ from lib.dataset.mesh_util import update_mesh_shape_prior_losses
16
 
17
 
18
  # reference: https://github.com/wuhaozhe/pytorch-nicp
 
85
  src_mesh.verts_padded().shape[0], src_mesh.edges_packed()
86
  ).to(device)
87
 
88
+ optimizer_cloth = torch.optim.Adam([{'params': local_affine_model.parameters()}],
89
+ lr=1e-2,
90
+ amsgrad=True)
 
 
91
  scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau(
92
  optimizer_cloth,
93
  mode="min",
 
103
  loop_cloth = tqdm(range(100))
104
  else:
105
  loop_cloth = range(100)
106
+
107
  for i in loop_cloth:
108
 
109
  optimizer_cloth.zero_grad()
lib/common/render.py CHANGED
@@ -14,35 +14,36 @@
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
 
 
 
 
17
  from pytorch3d.renderer import (
 
18
  BlendParams,
19
- blending,
20
- look_at_view_transform,
21
  FoVOrthographicCameras,
22
- RasterizationSettings,
 
23
  PointsRasterizationSettings,
24
- PointsRenderer,
25
- AlphaCompositor,
26
  PointsRasterizer,
27
- MeshRenderer,
28
- MeshRasterizer,
29
  SoftSilhouetteShader,
30
  TexturesVertex,
 
 
31
  )
32
  from pytorch3d.renderer.mesh import TexturesVertex
33
  from pytorch3d.structures import Meshes
34
- from lib.dataset.mesh_util import get_visibility
35
- from lib.common.imutils import blend_rgb_norm
36
 
37
  import lib.common.render_utils as util
38
- import torch
39
- import numpy as np
40
- from PIL import ImageColor
41
- from tqdm import tqdm
42
- import os
43
- import cv2
44
- import math
45
- from termcolor import colored
46
 
47
 
48
  def image2vid(images, vid_path):
@@ -58,7 +59,7 @@ def image2vid(images, vid_path):
58
  video.release()
59
 
60
 
61
- def query_color(verts, faces, image, device):
62
  """query colors from points and image
63
 
64
  Args:
@@ -77,16 +78,16 @@ def query_color(verts, faces, image, device):
77
  visibility = get_visibility(xy, z, faces[:, [0, 2, 1]]).flatten()
78
  uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2]
79
  uv = uv * torch.tensor([1.0, -1.0]).type_as(uv)
80
- colors = (
81
- (
82
- torch.nn.functional.grid_sample(image, uv, align_corners=True)[0, :, :,
83
- 0].permute(1, 0) + 1.0
84
- ) * 0.5 * 255.0
85
- )
86
- colors[visibility == 0.0] = (
87
- (Meshes(verts.unsqueeze(0), faces.unsqueeze(0)).verts_normals_padded().squeeze(0) + 1.0) *
88
- 0.5 * 255.0
89
- )[visibility == 0.0]
90
 
91
  return colors.detach().cpu()
92
 
@@ -121,31 +122,25 @@ class Render:
121
  self.step = 3
122
 
123
  self.cam_pos = {
124
- "frontback":
125
- torch.tensor(
126
- [
127
- (0, self.mesh_y_center, self.dis),
128
- (0, self.mesh_y_center, -self.dis),
129
- ]
130
- ),
131
- "four":
132
- torch.tensor(
133
- [
134
- (0, self.mesh_y_center, self.dis),
135
- (self.dis, self.mesh_y_center, 0),
136
- (0, self.mesh_y_center, -self.dis),
137
- (-self.dis, self.mesh_y_center, 0),
138
- ]
139
- ),
140
- "around":
141
- torch.tensor(
142
- [
143
- (
144
- 100.0 * math.cos(np.pi / 180 * angle), self.mesh_y_center,
145
- 100.0 * math.sin(np.pi / 180 * angle)
146
- ) for angle in range(0, 360, self.step)
147
- ]
148
- )
149
  }
150
 
151
  self.type = "color"
@@ -315,7 +310,7 @@ class Render:
315
  save_path,
316
  fourcc,
317
  self.fps,
318
- (width*3, int(height)),
319
  )
320
 
321
  pbar = tqdm(range(len(self.meshes)))
@@ -352,15 +347,13 @@ class Render:
352
  for cam_id in pbar:
353
  img_raw = data["img_raw"]
354
  num_obj = len(mesh_renders) // 2
355
- img_smpl = blend_rgb_norm(
356
- (torch.stack(mesh_renders)[:num_obj, cam_id] - 0.5) * 2.0, data
357
- )
358
- img_cloth = blend_rgb_norm(
359
- (torch.stack(mesh_renders)[num_obj:, cam_id] - 0.5) * 2.0, data
360
- )
361
- final_img = torch.cat(
362
- [img_raw, img_smpl, img_cloth], dim=-1).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
363
-
364
  video.write(final_img[:, :, ::-1])
365
 
366
  video.release()
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import math
18
+ import os
19
+
20
+ import cv2
21
+ import numpy as np
22
+ import torch
23
+ from PIL import ImageColor
24
  from pytorch3d.renderer import (
25
+ AlphaCompositor,
26
  BlendParams,
 
 
27
  FoVOrthographicCameras,
28
+ MeshRasterizer,
29
+ MeshRenderer,
30
  PointsRasterizationSettings,
 
 
31
  PointsRasterizer,
32
+ PointsRenderer,
33
+ RasterizationSettings,
34
  SoftSilhouetteShader,
35
  TexturesVertex,
36
+ blending,
37
+ look_at_view_transform,
38
  )
39
  from pytorch3d.renderer.mesh import TexturesVertex
40
  from pytorch3d.structures import Meshes
41
+ from termcolor import colored
42
+ from tqdm import tqdm
43
 
44
  import lib.common.render_utils as util
45
+ from lib.common.imutils import blend_rgb_norm
46
+ from lib.dataset.mesh_util import get_visibility
 
 
 
 
 
 
47
 
48
 
49
  def image2vid(images, vid_path):
 
59
  video.release()
60
 
61
 
62
+ def query_color(verts, faces, image, device, paint_normal=True):
63
  """query colors from points and image
64
 
65
  Args:
 
78
  visibility = get_visibility(xy, z, faces[:, [0, 2, 1]]).flatten()
79
  uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2]
80
  uv = uv * torch.tensor([1.0, -1.0]).type_as(uv)
81
+ colors = ((
82
+ torch.nn.functional.grid_sample(image, uv, align_corners=True)[0, :, :, 0].permute(1, 0) +
83
+ 1.0
84
+ ) * 0.5 * 255.0)
85
+ if paint_normal:
86
+ colors[visibility == 0.0] = ((
87
+ Meshes(verts.unsqueeze(0), faces.unsqueeze(0)).verts_normals_padded().squeeze(0) + 1.0
88
+ ) * 0.5 * 255.0)[visibility == 0.0]
89
+ else:
90
+ colors[visibility == 0.0] = torch.tensor([0.0, 0.0, 0.0]).to(device)
91
 
92
  return colors.detach().cpu()
93
 
 
122
  self.step = 3
123
 
124
  self.cam_pos = {
125
+ "front":
126
+ torch.tensor([
127
+ (0, self.mesh_y_center, self.dis),
128
+ (0, self.mesh_y_center, -self.dis),
129
+ ]), "frontback":
130
+ torch.tensor([
131
+ (0, self.mesh_y_center, self.dis),
132
+ (0, self.mesh_y_center, -self.dis),
133
+ ]), "four":
134
+ torch.tensor([
135
+ (0, self.mesh_y_center, self.dis),
136
+ (self.dis, self.mesh_y_center, 0),
137
+ (0, self.mesh_y_center, -self.dis),
138
+ (-self.dis, self.mesh_y_center, 0),
139
+ ]), "around":
140
+ torch.tensor([(
141
+ 100.0 * math.cos(np.pi / 180 * angle), self.mesh_y_center,
142
+ 100.0 * math.sin(np.pi / 180 * angle)
143
+ ) for angle in range(0, 360, self.step)])
 
 
 
 
 
 
144
  }
145
 
146
  self.type = "color"
 
310
  save_path,
311
  fourcc,
312
  self.fps,
313
+ (width * 3, int(height)),
314
  )
315
 
316
  pbar = tqdm(range(len(self.meshes)))
 
347
  for cam_id in pbar:
348
  img_raw = data["img_raw"]
349
  num_obj = len(mesh_renders) // 2
350
+ img_smpl = blend_rgb_norm((torch.stack(mesh_renders)[:num_obj, cam_id] - 0.5) * 2.0,
351
+ data)
352
+ img_cloth = blend_rgb_norm((torch.stack(mesh_renders)[num_obj:, cam_id] - 0.5) * 2.0,
353
+ data)
354
+ final_img = torch.cat([img_raw, img_smpl, img_cloth],
355
+ dim=-1).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
356
+
 
 
357
  video.write(final_img[:, :, ::-1])
358
 
359
  video.release()
lib/common/render_utils.py CHANGED
@@ -14,13 +14,15 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import torch
18
- from torch import nn
19
- import trimesh
20
  import math
21
  from typing import NewType
22
- from pytorch3d.structures import Meshes
 
 
 
23
  from pytorch3d.renderer.mesh import rasterize_meshes
 
 
24
 
25
  Tensor = NewType("Tensor", torch.Tensor)
26
 
@@ -125,8 +127,6 @@ def batch_contains(verts, faces, points):
125
 
126
 
127
  def dict2obj(d):
128
- # if isinstance(d, list):
129
- # d = [dict2obj(x) for x in d]
130
  if not isinstance(d, dict):
131
  return d
132
 
@@ -161,7 +161,9 @@ class Pytorch3dRasterizer(nn.Module):
161
  x,y,z are in image space, normalized
162
  can only render squared image now
163
  """
164
- def __init__(self, image_size=224, blur_radius=0.0, faces_per_pixel=1):
 
 
165
  """
166
  use fixed raster_settings for rendering faces
167
  """
@@ -177,6 +179,7 @@ class Pytorch3dRasterizer(nn.Module):
177
  }
178
  raster_settings = dict2obj(raster_settings)
179
  self.raster_settings = raster_settings
 
180
 
181
  def forward(self, vertices, faces, attributes=None):
182
  fixed_vertices = vertices.clone()
@@ -209,3 +212,15 @@ class Pytorch3dRasterizer(nn.Module):
209
  pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
210
  pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
211
  return pixel_vals
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
17
  import math
18
  from typing import NewType
19
+
20
+ import numpy as np
21
+ import torch
22
+ import trimesh
23
  from pytorch3d.renderer.mesh import rasterize_meshes
24
+ from pytorch3d.structures import Meshes
25
+ from torch import nn
26
 
27
  Tensor = NewType("Tensor", torch.Tensor)
28
 
 
127
 
128
 
129
  def dict2obj(d):
 
 
130
  if not isinstance(d, dict):
131
  return d
132
 
 
161
  x,y,z are in image space, normalized
162
  can only render squared image now
163
  """
164
+ def __init__(
165
+ self, image_size=224, blur_radius=0.0, faces_per_pixel=1, device=torch.device("cuda:0")
166
+ ):
167
  """
168
  use fixed raster_settings for rendering faces
169
  """
 
179
  }
180
  raster_settings = dict2obj(raster_settings)
181
  self.raster_settings = raster_settings
182
+ self.device = device
183
 
184
  def forward(self, vertices, faces, attributes=None):
185
  fixed_vertices = vertices.clone()
 
212
  pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
213
  pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
214
  return pixel_vals
215
+
216
+ def get_texture(self, uvcoords, uvfaces, verts, faces, verts_color):
217
+
218
+ batch_size = verts.shape[0]
219
+ uv_verts_color = face_vertices(verts_color, faces.expand(batch_size, -1,
220
+ -1)).to(self.device)
221
+ uv_map = self.forward(
222
+ uvcoords.expand(batch_size, -1, -1), uvfaces.expand(batch_size, -1, -1), uv_verts_color
223
+ )[:, :3]
224
+ uv_map_npy = np.flip(uv_map.squeeze(0).permute(1, 2, 0).cpu().numpy(), 0)
225
+
226
+ return uv_map_npy
lib/common/seg3d_lossless.py CHANGED
@@ -14,19 +14,16 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from .seg3d_utils import (
18
- create_grid3D,
19
- plot_mask3D,
20
- SmoothConv3D,
21
- )
22
 
 
23
  import torch
24
  import torch.nn as nn
25
- import numpy as np
26
  import torch.nn.functional as F
27
- import logging
28
  from pytorch3d.ops.marching_cubes import marching_cubes
29
 
 
 
30
  logging.getLogger("lightning").setLevel(logging.ERROR)
31
 
32
 
@@ -378,10 +375,8 @@ class Seg3dLossless(nn.Module):
378
 
379
  with torch.no_grad():
380
  # conflicts
381
- conflicts = (
382
- (occupancys_interp - self.balance_value) *
383
- (occupancys_topk - self.balance_value) < 0
384
- )[0, 0]
385
 
386
  if self.visualize:
387
  self.plot(occupancys, coords, final_D, final_H, final_W)
@@ -407,12 +402,9 @@ class Seg3dLossless(nn.Module):
407
  title="conflicts",
408
  )
409
 
410
- conflicts_boundary = (
411
- (
412
- conflicts_coords.int() +
413
- self.gird8_offsets.unsqueeze(1) * stride.int()
414
- ).reshape(-1, 3).long().unique(dim=0)
415
- )
416
  conflicts_boundary[:, 0] = conflicts_boundary[:, 0].clamp(
417
  0,
418
  calculated.size(2) - 1
@@ -466,10 +458,8 @@ class Seg3dLossless(nn.Module):
466
 
467
  with torch.no_grad():
468
  # conflicts
469
- conflicts = (
470
- (occupancys_interp - self.balance_value) *
471
- (occupancys_topk - self.balance_value) < 0
472
- )[0, 0]
473
 
474
  # put mask point predictions to the right places on the upsampled grid.
475
  point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import logging
 
 
 
 
18
 
19
+ import numpy as np
20
  import torch
21
  import torch.nn as nn
 
22
  import torch.nn.functional as F
 
23
  from pytorch3d.ops.marching_cubes import marching_cubes
24
 
25
+ from .seg3d_utils import SmoothConv3D, create_grid3D, plot_mask3D
26
+
27
  logging.getLogger("lightning").setLevel(logging.ERROR)
28
 
29
 
 
375
 
376
  with torch.no_grad():
377
  # conflicts
378
+ conflicts = ((occupancys_interp - self.balance_value) *
379
+ (occupancys_topk - self.balance_value) < 0)[0, 0]
 
 
380
 
381
  if self.visualize:
382
  self.plot(occupancys, coords, final_D, final_H, final_W)
 
402
  title="conflicts",
403
  )
404
 
405
+ conflicts_boundary = ((
406
+ conflicts_coords.int() + self.gird8_offsets.unsqueeze(1) * stride.int()
407
+ ).reshape(-1, 3).long().unique(dim=0))
 
 
 
408
  conflicts_boundary[:, 0] = conflicts_boundary[:, 0].clamp(
409
  0,
410
  calculated.size(2) - 1
 
458
 
459
  with torch.no_grad():
460
  # conflicts
461
+ conflicts = ((occupancys_interp - self.balance_value) *
462
+ (occupancys_topk - self.balance_value) < 0)[0, 0]
 
 
463
 
464
  # put mask point predictions to the right places on the upsampled grid.
465
  point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
lib/common/seg3d_utils.py CHANGED
@@ -14,10 +14,10 @@
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import torch
18
  import torch.nn as nn
19
  import torch.nn.functional as F
20
- import matplotlib.pyplot as plt
21
 
22
 
23
  def plot_mask2D(mask, title="", point_coords=None, figsize=10, point_marker_size=5):
@@ -140,9 +140,8 @@ class SmoothConv2D(nn.Module):
140
  assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
141
  self.padding = (kernel_size - 1) // 2
142
 
143
- weight = torch.ones(
144
- (in_channels, out_channels, kernel_size, kernel_size), dtype=torch.float32
145
- ) / (kernel_size**2)
146
  self.register_buffer('weight', weight)
147
 
148
  def forward(self, input):
@@ -155,9 +154,8 @@ class SmoothConv3D(nn.Module):
155
  assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
156
  self.padding = (kernel_size - 1) // 2
157
 
158
- weight = torch.ones(
159
- (in_channels, out_channels, kernel_size, kernel_size, kernel_size), dtype=torch.float32
160
- ) / (kernel_size**3)
161
  self.register_buffer('weight', weight)
162
 
163
  def forward(self, input):
@@ -185,9 +183,8 @@ def build_smooth_conv2D(in_channels=1, out_channels=1, kernel_size=3, padding=1)
185
  kernel_size=kernel_size,
186
  padding=padding
187
  )
188
- smooth_conv.weight.data = torch.ones(
189
- (in_channels, out_channels, kernel_size, kernel_size), dtype=torch.float32
190
- ) / (kernel_size**2)
191
  smooth_conv.bias.data = torch.zeros(out_channels)
192
  return smooth_conv
193
 
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import matplotlib.pyplot as plt
18
  import torch
19
  import torch.nn as nn
20
  import torch.nn.functional as F
 
21
 
22
 
23
  def plot_mask2D(mask, title="", point_coords=None, figsize=10, point_marker_size=5):
 
140
  assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
141
  self.padding = (kernel_size - 1) // 2
142
 
143
+ weight = torch.ones((in_channels, out_channels, kernel_size, kernel_size),
144
+ dtype=torch.float32) / (kernel_size**2)
 
145
  self.register_buffer('weight', weight)
146
 
147
  def forward(self, input):
 
154
  assert kernel_size % 2 == 1, "kernel_size for smooth_conv must be odd: {3, 5, ...}"
155
  self.padding = (kernel_size - 1) // 2
156
 
157
+ weight = torch.ones((in_channels, out_channels, kernel_size, kernel_size, kernel_size),
158
+ dtype=torch.float32) / (kernel_size**3)
 
159
  self.register_buffer('weight', weight)
160
 
161
  def forward(self, input):
 
183
  kernel_size=kernel_size,
184
  padding=padding
185
  )
186
+ smooth_conv.weight.data = torch.ones((in_channels, out_channels, kernel_size, kernel_size),
187
+ dtype=torch.float32) / (kernel_size**2)
 
188
  smooth_conv.bias.data = torch.zeros(out_channels)
189
  return smooth_conv
190
 
lib/common/train_util.py CHANGED
@@ -14,11 +14,12 @@
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import torch
 
 
18
  from ..dataset.mesh_util import *
19
  from ..net.geometry import orthogonal
20
- from termcolor import colored
21
- import pytorch_lightning as pl
22
 
23
 
24
  class Format:
@@ -30,50 +31,23 @@ def init_loss():
30
 
31
  losses = {
32
  # Cloth: chamfer distance
33
- "cloth": {
34
- "weight": 1e3,
35
- "value": 0.0
36
- },
37
  # Stiffness: [RT]_v1 - [RT]_v2 (v1-edge-v2)
38
- "stiff": {
39
- "weight": 1e5,
40
- "value": 0.0
41
- },
42
  # Cloth: det(R) = 1
43
- "rigid": {
44
- "weight": 1e5,
45
- "value": 0.0
46
- },
47
  # Cloth: edge length
48
- "edge": {
49
- "weight": 0,
50
- "value": 0.0
51
- },
52
  # Cloth: normal consistency
53
- "nc": {
54
- "weight": 0,
55
- "value": 0.0
56
- },
57
  # Cloth: laplacian smoonth
58
- "lapla": {
59
- "weight": 1e2,
60
- "value": 0.0
61
- },
62
  # Body: Normal_pred - Normal_smpl
63
- "normal": {
64
- "weight": 1e0,
65
- "value": 0.0
66
- },
67
  # Body: Silhouette_pred - Silhouette_smpl
68
- "silhouette": {
69
- "weight": 1e0,
70
- "value": 0.0
71
- },
72
  # Joint: reprojected joints difference
73
- "joint": {
74
- "weight": 5e0,
75
- "value": 0.0
76
- },
77
  }
78
 
79
  return losses
@@ -143,9 +117,9 @@ def query_func_IF(batch, netG, points):
143
 
144
 
145
  def batch_mean(res, key):
146
- return torch.stack(
147
- [x[key] if torch.is_tensor(x[key]) else torch.as_tensor(x[key]) for x in res]
148
- ).mean()
149
 
150
 
151
  def accumulate(outputs, rot_num, split):
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import pytorch_lightning as pl
18
  import torch
19
+ from termcolor import colored
20
+
21
  from ..dataset.mesh_util import *
22
  from ..net.geometry import orthogonal
 
 
23
 
24
 
25
  class Format:
 
31
 
32
  losses = {
33
  # Cloth: chamfer distance
34
+ "cloth": {"weight": 1e3, "value": 0.0},
 
 
 
35
  # Stiffness: [RT]_v1 - [RT]_v2 (v1-edge-v2)
36
+ "stiff": {"weight": 1e5, "value": 0.0},
 
 
 
37
  # Cloth: det(R) = 1
38
+ "rigid": {"weight": 1e5, "value": 0.0},
 
 
 
39
  # Cloth: edge length
40
+ "edge": {"weight": 0, "value": 0.0},
 
 
 
41
  # Cloth: normal consistency
42
+ "nc": {"weight": 0, "value": 0.0},
 
 
 
43
  # Cloth: laplacian smoonth
44
+ "lapla": {"weight": 1e2, "value": 0.0},
 
 
 
45
  # Body: Normal_pred - Normal_smpl
46
+ "normal": {"weight": 1e0, "value": 0.0},
 
 
 
47
  # Body: Silhouette_pred - Silhouette_smpl
48
+ "silhouette": {"weight": 1e0, "value": 0.0},
 
 
 
49
  # Joint: reprojected joints difference
50
+ "joint": {"weight": 5e0, "value": 0.0},
 
 
 
51
  }
52
 
53
  return losses
 
117
 
118
 
119
  def batch_mean(res, key):
120
+ return torch.stack([
121
+ x[key] if torch.is_tensor(x[key]) else torch.as_tensor(x[key]) for x in res
122
+ ]).mean()
123
 
124
 
125
  def accumulate(outputs, rot_num, split):
lib/common/voxelize.py CHANGED
@@ -1,15 +1,14 @@
1
- import trimesh
2
- import numpy as np
3
  import os
4
  import traceback
5
 
6
- import torch
7
  import numpy as np
 
8
  import trimesh
9
  from scipy import ndimage
10
  from skimage.measure import block_reduce
11
- from lib.common.libvoxelize.voxelize import voxelize_mesh_
12
  from lib.common.libmesh.inside_mesh import check_mesh_contains
 
13
 
14
  # From Occupancy Networks, Mescheder et. al. CVPR'19
15
 
@@ -147,76 +146,63 @@ class VoxelGrid:
147
  f2_r_x, f2_r_y, f2_r_z = np.where(f2_r)
148
  f3_r_x, f3_r_y, f3_r_z = np.where(f3_r)
149
 
150
- faces_1_l = np.stack(
151
- [
152
- v_idx[f1_l_x, f1_l_y, f1_l_z],
153
- v_idx[f1_l_x, f1_l_y, f1_l_z + 1],
154
- v_idx[f1_l_x, f1_l_y + 1, f1_l_z + 1],
155
- v_idx[f1_l_x, f1_l_y + 1, f1_l_z],
156
- ],
157
- axis=1
158
- )
159
-
160
- faces_1_r = np.stack(
161
- [
162
- v_idx[f1_r_x, f1_r_y, f1_r_z],
163
- v_idx[f1_r_x, f1_r_y + 1, f1_r_z],
164
- v_idx[f1_r_x, f1_r_y + 1, f1_r_z + 1],
165
- v_idx[f1_r_x, f1_r_y, f1_r_z + 1],
166
- ],
167
- axis=1
168
- )
169
-
170
- faces_2_l = np.stack(
171
- [
172
- v_idx[f2_l_x, f2_l_y, f2_l_z],
173
- v_idx[f2_l_x + 1, f2_l_y, f2_l_z],
174
- v_idx[f2_l_x + 1, f2_l_y, f2_l_z + 1],
175
- v_idx[f2_l_x, f2_l_y, f2_l_z + 1],
176
- ],
177
- axis=1
178
- )
179
-
180
- faces_2_r = np.stack(
181
- [
182
- v_idx[f2_r_x, f2_r_y, f2_r_z],
183
- v_idx[f2_r_x, f2_r_y, f2_r_z + 1],
184
- v_idx[f2_r_x + 1, f2_r_y, f2_r_z + 1],
185
- v_idx[f2_r_x + 1, f2_r_y, f2_r_z],
186
- ],
187
- axis=1
188
- )
189
-
190
- faces_3_l = np.stack(
191
- [
192
- v_idx[f3_l_x, f3_l_y, f3_l_z],
193
- v_idx[f3_l_x, f3_l_y + 1, f3_l_z],
194
- v_idx[f3_l_x + 1, f3_l_y + 1, f3_l_z],
195
- v_idx[f3_l_x + 1, f3_l_y, f3_l_z],
196
- ],
197
- axis=1
198
- )
199
-
200
- faces_3_r = np.stack(
201
- [
202
- v_idx[f3_r_x, f3_r_y, f3_r_z],
203
- v_idx[f3_r_x + 1, f3_r_y, f3_r_z],
204
- v_idx[f3_r_x + 1, f3_r_y + 1, f3_r_z],
205
- v_idx[f3_r_x, f3_r_y + 1, f3_r_z],
206
- ],
207
- axis=1
208
- )
209
-
210
- faces = np.concatenate(
211
- [
212
- faces_1_l,
213
- faces_1_r,
214
- faces_2_l,
215
- faces_2_r,
216
- faces_3_l,
217
- faces_3_r,
218
- ], axis=0
219
- )
220
 
221
  vertices = self.loc + self.scale * vertices
222
  mesh = trimesh.Trimesh(vertices, faces, process=False)
 
 
 
1
  import os
2
  import traceback
3
 
 
4
  import numpy as np
5
+ import torch
6
  import trimesh
7
  from scipy import ndimage
8
  from skimage.measure import block_reduce
9
+
10
  from lib.common.libmesh.inside_mesh import check_mesh_contains
11
+ from lib.common.libvoxelize.voxelize import voxelize_mesh_
12
 
13
  # From Occupancy Networks, Mescheder et. al. CVPR'19
14
 
 
146
  f2_r_x, f2_r_y, f2_r_z = np.where(f2_r)
147
  f3_r_x, f3_r_y, f3_r_z = np.where(f3_r)
148
 
149
+ faces_1_l = np.stack([
150
+ v_idx[f1_l_x, f1_l_y, f1_l_z],
151
+ v_idx[f1_l_x, f1_l_y, f1_l_z + 1],
152
+ v_idx[f1_l_x, f1_l_y + 1, f1_l_z + 1],
153
+ v_idx[f1_l_x, f1_l_y + 1, f1_l_z],
154
+ ],
155
+ axis=1)
156
+
157
+ faces_1_r = np.stack([
158
+ v_idx[f1_r_x, f1_r_y, f1_r_z],
159
+ v_idx[f1_r_x, f1_r_y + 1, f1_r_z],
160
+ v_idx[f1_r_x, f1_r_y + 1, f1_r_z + 1],
161
+ v_idx[f1_r_x, f1_r_y, f1_r_z + 1],
162
+ ],
163
+ axis=1)
164
+
165
+ faces_2_l = np.stack([
166
+ v_idx[f2_l_x, f2_l_y, f2_l_z],
167
+ v_idx[f2_l_x + 1, f2_l_y, f2_l_z],
168
+ v_idx[f2_l_x + 1, f2_l_y, f2_l_z + 1],
169
+ v_idx[f2_l_x, f2_l_y, f2_l_z + 1],
170
+ ],
171
+ axis=1)
172
+
173
+ faces_2_r = np.stack([
174
+ v_idx[f2_r_x, f2_r_y, f2_r_z],
175
+ v_idx[f2_r_x, f2_r_y, f2_r_z + 1],
176
+ v_idx[f2_r_x + 1, f2_r_y, f2_r_z + 1],
177
+ v_idx[f2_r_x + 1, f2_r_y, f2_r_z],
178
+ ],
179
+ axis=1)
180
+
181
+ faces_3_l = np.stack([
182
+ v_idx[f3_l_x, f3_l_y, f3_l_z],
183
+ v_idx[f3_l_x, f3_l_y + 1, f3_l_z],
184
+ v_idx[f3_l_x + 1, f3_l_y + 1, f3_l_z],
185
+ v_idx[f3_l_x + 1, f3_l_y, f3_l_z],
186
+ ],
187
+ axis=1)
188
+
189
+ faces_3_r = np.stack([
190
+ v_idx[f3_r_x, f3_r_y, f3_r_z],
191
+ v_idx[f3_r_x + 1, f3_r_y, f3_r_z],
192
+ v_idx[f3_r_x + 1, f3_r_y + 1, f3_r_z],
193
+ v_idx[f3_r_x, f3_r_y + 1, f3_r_z],
194
+ ],
195
+ axis=1)
196
+
197
+ faces = np.concatenate([
198
+ faces_1_l,
199
+ faces_1_r,
200
+ faces_2_l,
201
+ faces_2_r,
202
+ faces_3_l,
203
+ faces_3_r,
204
+ ],
205
+ axis=0)
 
 
 
 
 
 
 
 
 
 
 
 
 
206
 
207
  vertices = self.loc + self.scale * vertices
208
  mesh = trimesh.Trimesh(vertices, faces, process=False)
lib/dataset/EvalDataset.py CHANGED
@@ -14,22 +14,24 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import torch.nn.functional as F
18
- from lib.common.render import Render
19
- from lib.dataset.mesh_util import (SMPLX, projection, rescale_smpl, HoppeMesh)
20
- import os.path as osp
21
- import numpy as np
22
- from PIL import Image
23
  import os
 
 
24
  import cv2
25
- import trimesh
26
  import torch
 
27
  import torchvision.transforms as transforms
 
 
 
 
 
28
 
29
  cape_gender = {
30
  "male":
31
- ['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375', '03394'],
32
- "female": ['00134', '00159', '03223', '03331', '03383']
33
  }
34
 
35
 
@@ -74,30 +76,27 @@ class EvalDataset:
74
  "scale": self.scales[dataset_id],
75
  }
76
 
77
- self.datasets_dict[dataset].update(
78
- {"subjects": np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)}
79
- )
 
80
 
81
  self.subject_list = self.get_subject_list()
82
  self.smplx = SMPLX()
83
 
84
  # PIL to tensor
85
- self.image_to_tensor = transforms.Compose(
86
- [
87
- transforms.Resize(self.input_size),
88
- transforms.ToTensor(),
89
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
90
- ]
91
- )
92
 
93
  # PIL to tensor
94
- self.mask_to_tensor = transforms.Compose(
95
- [
96
- transforms.Resize(self.input_size),
97
- transforms.ToTensor(),
98
- transforms.Normalize((0.0, ), (1.0, )),
99
- ]
100
- )
101
 
102
  self.device = device
103
  self.render = Render(size=512, device=self.device)
@@ -154,27 +153,23 @@ class EvalDataset:
154
  }
155
 
156
  if dataset == "cape":
157
- data_dict.update(
158
- {
159
- "mesh_path":
160
- osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
161
- "smpl_path":
162
- osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
163
- }
164
- )
165
  else:
166
 
167
- data_dict.update(
168
- {
169
- "mesh_path":
170
- osp.join(
171
- self.datasets_dict[dataset]["mesh_dir"],
172
- f"{subject}.obj",
173
- ),
174
- "smplx_path":
175
- osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
176
- }
177
- )
178
 
179
  # load training data
180
  data_dict.update(self.load_calib(data_dict))
@@ -183,18 +178,17 @@ class EvalDataset:
183
  for name, channel in zip(self.in_total, self.in_total_dim):
184
 
185
  if f"{name}_path" not in data_dict.keys():
186
- data_dict.update(
187
- {
188
- f"{name}_path":
189
- osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
190
- }
191
- )
192
 
193
  # tensor update
194
  if os.path.exists(data_dict[f"{name}_path"]):
195
- data_dict.update(
196
- {name: self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False)}
197
- )
 
198
 
199
  data_dict.update(self.load_mesh(data_dict))
200
  data_dict.update(self.load_smpl(data_dict))
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
 
 
 
17
  import os
18
+ import os.path as osp
19
+
20
  import cv2
21
+ import numpy as np
22
  import torch
23
+ import torch.nn.functional as F
24
  import torchvision.transforms as transforms
25
+ import trimesh
26
+ from PIL import Image
27
+
28
+ from lib.common.render import Render
29
+ from lib.dataset.mesh_util import SMPLX, HoppeMesh, projection, rescale_smpl
30
 
31
  cape_gender = {
32
  "male":
33
+ ['00032', '00096', '00122', '00127', '00145', '00215', '02474', '03284', '03375',
34
+ '03394'], "female": ['00134', '00159', '03223', '03331', '03383']
35
  }
36
 
37
 
 
76
  "scale": self.scales[dataset_id],
77
  }
78
 
79
+ self.datasets_dict[dataset].update({
80
+ "subjects":
81
+ np.loadtxt(osp.join(dataset_dir, "all.txt"), dtype=str)
82
+ })
83
 
84
  self.subject_list = self.get_subject_list()
85
  self.smplx = SMPLX()
86
 
87
  # PIL to tensor
88
+ self.image_to_tensor = transforms.Compose([
89
+ transforms.Resize(self.input_size),
90
+ transforms.ToTensor(),
91
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
92
+ ])
 
 
93
 
94
  # PIL to tensor
95
+ self.mask_to_tensor = transforms.Compose([
96
+ transforms.Resize(self.input_size),
97
+ transforms.ToTensor(),
98
+ transforms.Normalize((0.0, ), (1.0, )),
99
+ ])
 
 
100
 
101
  self.device = device
102
  self.render = Render(size=512, device=self.device)
 
153
  }
154
 
155
  if dataset == "cape":
156
+ data_dict.update({
157
+ "mesh_path":
158
+ osp.join(self.datasets_dict[dataset]["mesh_dir"], f"{subject}.obj"),
159
+ "smpl_path":
160
+ osp.join(self.datasets_dict[dataset]["smpl_dir"], f"{subject}.obj"),
161
+ })
 
 
162
  else:
163
 
164
+ data_dict.update({
165
+ "mesh_path":
166
+ osp.join(
167
+ self.datasets_dict[dataset]["mesh_dir"],
168
+ f"{subject}.obj",
169
+ ),
170
+ "smplx_path":
171
+ osp.join(self.datasets_dict[dataset]["smplx_dir"], f"{subject}.obj"),
172
+ })
 
 
173
 
174
  # load training data
175
  data_dict.update(self.load_calib(data_dict))
 
178
  for name, channel in zip(self.in_total, self.in_total_dim):
179
 
180
  if f"{name}_path" not in data_dict.keys():
181
+ data_dict.update({
182
+ f"{name}_path":
183
+ osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
184
+ })
 
 
185
 
186
  # tensor update
187
  if os.path.exists(data_dict[f"{name}_path"]):
188
+ data_dict.update({
189
+ name:
190
+ self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False)
191
+ })
192
 
193
  data_dict.update(self.load_mesh(data_dict))
194
  data_dict.update(self.load_smpl(data_dict))
lib/dataset/Evaluator.py CHANGED
@@ -14,20 +14,21 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from lib.dataset.mesh_util import projection
18
- from lib.common.render import Render
19
  import numpy as np
20
  import torch
21
- from torchvision.utils import make_grid
22
  from pytorch3d import _C
 
 
 
23
  from torch.autograd import Function
24
  from torch.autograd.function import once_differentiable
25
- from pytorch3d.structures import Pointclouds
26
- from PIL import Image
27
 
28
- from typing import Tuple
29
- from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals
30
- from pytorch3d.ops.packed_to_padded import packed_to_padded
31
 
32
  _DEFAULT_MIN_TRIANGLE_AREA: float = 5e-3
33
 
@@ -278,12 +279,10 @@ class Evaluator:
278
 
279
  # error_hf = ((((src_normal_arr - tgt_normal_arr) * sim_mask)**2).sum(dim=0).mean()) * 4.0
280
 
281
- normal_img = Image.fromarray(
282
- (
283
- torch.cat([src_normal_arr, tgt_normal_arr],
284
- dim=1).permute(1, 2, 0).detach().cpu().numpy() * 255.0
285
- ).astype(np.uint8)
286
- )
287
  normal_img.save(normal_path)
288
 
289
  return error
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ from typing import Tuple
18
+
19
  import numpy as np
20
  import torch
21
+ from PIL import Image
22
  from pytorch3d import _C
23
+ from pytorch3d.ops.mesh_face_areas_normals import mesh_face_areas_normals
24
+ from pytorch3d.ops.packed_to_padded import packed_to_padded
25
+ from pytorch3d.structures import Pointclouds
26
  from torch.autograd import Function
27
  from torch.autograd.function import once_differentiable
28
+ from torchvision.utils import make_grid
 
29
 
30
+ from lib.common.render import Render
31
+ from lib.dataset.mesh_util import projection
 
32
 
33
  _DEFAULT_MIN_TRIANGLE_AREA: float = 5e-3
34
 
 
279
 
280
  # error_hf = ((((src_normal_arr - tgt_normal_arr) * sim_mask)**2).sum(dim=0).mean()) * 4.0
281
 
282
+ normal_img = Image.fromarray((
283
+ torch.cat([src_normal_arr, tgt_normal_arr],
284
+ dim=1).permute(1, 2, 0).detach().cpu().numpy() * 255.0
285
+ ).astype(np.uint8))
 
 
286
  normal_img.save(normal_path)
287
 
288
  return error
lib/dataset/NormalDataset.py CHANGED
@@ -14,12 +14,13 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import kornia
18
  import os.path as osp
 
 
19
  import numpy as np
 
20
  from PIL import Image
21
  from termcolor import colored
22
- import torchvision.transforms as transforms
23
 
24
 
25
  class NormalDataset:
@@ -59,22 +60,18 @@ class NormalDataset:
59
  self.subject_list = self.get_subject_list(split)
60
 
61
  # PIL to tensor
62
- self.image_to_tensor = transforms.Compose(
63
- [
64
- transforms.Resize(self.input_size),
65
- transforms.ToTensor(),
66
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
67
- ]
68
- )
69
 
70
  # PIL to tensor
71
- self.mask_to_tensor = transforms.Compose(
72
- [
73
- transforms.Resize(self.input_size),
74
- transforms.ToTensor(),
75
- transforms.Normalize((0.0, ), (1.0, )),
76
- ]
77
- )
78
 
79
  def get_subject_list(self, split):
80
 
@@ -128,21 +125,15 @@ class NormalDataset:
128
  for name, channel in zip(self.in_total, self.in_total_dim):
129
 
130
  if f"{name}_path" not in data_dict.keys():
131
- data_dict.update(
132
- {
133
- f"{name}_path":
134
- osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
135
- }
136
- )
137
-
138
- data_dict.update(
139
- {
140
- name:
141
- self.imagepath2tensor(
142
- data_dict[f"{name}_path"], channel, inv=False, erasing=False
143
- )
144
- }
145
- )
146
 
147
  path_keys = [key for key in data_dict.keys() if "_path" in key or "_dir" in key]
148
 
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import os.path as osp
18
+
19
+ import kornia
20
  import numpy as np
21
+ import torchvision.transforms as transforms
22
  from PIL import Image
23
  from termcolor import colored
 
24
 
25
 
26
  class NormalDataset:
 
60
  self.subject_list = self.get_subject_list(split)
61
 
62
  # PIL to tensor
63
+ self.image_to_tensor = transforms.Compose([
64
+ transforms.Resize(self.input_size),
65
+ transforms.ToTensor(),
66
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
67
+ ])
 
 
68
 
69
  # PIL to tensor
70
+ self.mask_to_tensor = transforms.Compose([
71
+ transforms.Resize(self.input_size),
72
+ transforms.ToTensor(),
73
+ transforms.Normalize((0.0, ), (1.0, )),
74
+ ])
 
 
75
 
76
  def get_subject_list(self, split):
77
 
 
125
  for name, channel in zip(self.in_total, self.in_total_dim):
126
 
127
  if f"{name}_path" not in data_dict.keys():
128
+ data_dict.update({
129
+ f"{name}_path":
130
+ osp.join(self.root, render_folder, name, f"{rotation:03d}.png")
131
+ })
132
+
133
+ data_dict.update({
134
+ name:
135
+ self.imagepath2tensor(data_dict[f"{name}_path"], channel, inv=False, erasing=False)
136
+ })
 
 
 
 
 
 
137
 
138
  path_keys = [key for key in data_dict.keys() if "_path" in key or "_dir" in key]
139
 
lib/dataset/NormalModule.py CHANGED
@@ -14,11 +14,11 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from torch.utils.data import DataLoader
18
- from lib.dataset.NormalDataset import NormalDataset
19
-
20
  # pytorch lightning related libs
21
  import pytorch_lightning as pl
 
 
 
22
 
23
 
24
  class NormalModule(pl.LightningDataModule):
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
17
  # pytorch lightning related libs
18
  import pytorch_lightning as pl
19
+ from torch.utils.data import DataLoader
20
+
21
+ from lib.dataset.NormalDataset import NormalDataset
22
 
23
 
24
  class NormalModule(pl.LightningDataModule):
lib/dataset/PointFeat.py CHANGED
@@ -1,5 +1,6 @@
1
- from pytorch3d.structures import Meshes, Pointclouds
2
  import torch
 
 
3
  from lib.common.render_utils import face_vertices
4
  from lib.dataset.Evaluator import point_mesh_distance
5
  from lib.dataset.mesh_util import SMPLX, barycentric_coordinates_of_projection
 
 
1
  import torch
2
+ from pytorch3d.structures import Meshes, Pointclouds
3
+
4
  from lib.common.render_utils import face_vertices
5
  from lib.dataset.Evaluator import point_mesh_distance
6
  from lib.dataset.mesh_util import SMPLX, barycentric_coordinates_of_projection
lib/dataset/TestDataset.py CHANGED
@@ -14,37 +14,34 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import warnings
18
  import logging
 
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
24
- from lib.pixielib.utils.config import cfg as pixie_cfg
25
- from lib.pixielib.pixie import PIXIE
26
- from lib.pixielib.models.SMPLX import SMPLX as PIXIE_SMPLX
27
- from lib.common.imutils import process_image
28
- from lib.common.train_util import Format
29
- from lib.net.geometry import rotation_matrix_to_angle_axis, rot6d_to_rotmat
30
-
31
- from lib.pymafx.core import path_config
32
- from lib.pymafx.models import pymaf_net
33
 
34
- from lib.common.config import cfg
35
- from lib.common.render import Render
36
- from lib.dataset.body_model import TetraSMPLModel
37
- from lib.dataset.mesh_util import get_visibility, SMPLX
38
  import torch.nn.functional as F
 
 
39
  from torchvision import transforms
40
  from torchvision.models import detection
41
 
42
- import os.path as osp
43
- import torch
44
- import glob
45
- import numpy as np
46
- from termcolor import colored
47
- from PIL import ImageFile
 
 
 
 
48
 
49
  ImageFile.LOAD_TRUNCATED_IMAGES = True
50
 
@@ -66,9 +63,8 @@ class TestDataset:
66
  keep_lst = sorted(glob.glob(f"{self.image_dir}/*"))
67
  img_fmts = ["jpg", "png", "jpeg", "JPG", "bmp", "exr"]
68
 
69
- self.subject_list = sorted(
70
- [item for item in keep_lst if item.split(".")[-1] in img_fmts], reverse=False
71
- )
72
 
73
  # smpl related
74
  self.smpl_data = SMPLX()
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import logging
18
+ import warnings
19
 
20
  warnings.filterwarnings("ignore")
21
  logging.getLogger("lightning").setLevel(logging.ERROR)
22
  logging.getLogger("trimesh").setLevel(logging.ERROR)
23
 
24
+ import glob
25
+ import os.path as osp
 
 
 
 
 
 
 
26
 
27
+ import numpy as np
28
+ import torch
 
 
29
  import torch.nn.functional as F
30
+ from PIL import ImageFile
31
+ from termcolor import colored
32
  from torchvision import transforms
33
  from torchvision.models import detection
34
 
35
+ from lib.common.config import cfg
36
+ from lib.common.imutils import process_image
37
+ from lib.common.render import Render
38
+ from lib.common.train_util import Format
39
+ from lib.dataset.mesh_util import SMPLX, get_visibility
40
+ from lib.pixielib.models.SMPLX import SMPLX as PIXIE_SMPLX
41
+ from lib.pixielib.pixie import PIXIE
42
+ from lib.pixielib.utils.config import cfg as pixie_cfg
43
+ from lib.pymafx.core import path_config
44
+ from lib.pymafx.models import pymaf_net
45
 
46
  ImageFile.LOAD_TRUNCATED_IMAGES = True
47
 
 
63
  keep_lst = sorted(glob.glob(f"{self.image_dir}/*"))
64
  img_fmts = ["jpg", "png", "jpeg", "JPG", "bmp", "exr"]
65
 
66
+ self.subject_list = sorted([item for item in keep_lst if item.split(".")[-1] in img_fmts],
67
+ reverse=False)
 
68
 
69
  # smpl related
70
  self.smpl_data = SMPLX()
lib/dataset/body_model.py CHANGED
@@ -14,10 +14,11 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import numpy as np
18
  import pickle
 
 
19
  import torch
20
- import os
21
 
22
 
23
  class SMPLModel:
@@ -126,12 +127,10 @@ class SMPLModel:
126
  for i in range(1, self.kintree_table.shape[1]):
127
  G[i] = G[self.parent[i]].dot(
128
  self.with_zeros(
129
- np.hstack(
130
- [
131
- self.R[i],
132
- ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])),
133
- ]
134
- )
135
  )
136
  )
137
  # remove the transformation due to the rest pose
@@ -163,19 +162,17 @@ class SMPLModel:
163
  r_hat = r / theta
164
  cos = np.cos(theta)
165
  z_stick = np.zeros(theta.shape[0])
166
- m = np.dstack(
167
- [
168
- z_stick,
169
- -r_hat[:, 0, 2],
170
- r_hat[:, 0, 1],
171
- r_hat[:, 0, 2],
172
- z_stick,
173
- -r_hat[:, 0, 0],
174
- -r_hat[:, 0, 1],
175
- r_hat[:, 0, 0],
176
- z_stick,
177
- ]
178
- ).reshape([-1, 3, 3])
179
  i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3])
180
  A = np.transpose(r_hat, axes=[0, 2, 1])
181
  B = r_hat
@@ -357,12 +354,10 @@ class TetraSMPLModel:
357
  for i in range(1, self.kintree_table.shape[1]):
358
  G[i] = G[self.parent[i]].dot(
359
  self.with_zeros(
360
- np.hstack(
361
- [
362
- self.R[i],
363
- ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])),
364
- ]
365
- )
366
  )
367
  )
368
  # remove the transformation due to the rest pose
@@ -398,19 +393,17 @@ class TetraSMPLModel:
398
  r_hat = r / theta
399
  cos = np.cos(theta)
400
  z_stick = np.zeros(theta.shape[0])
401
- m = np.dstack(
402
- [
403
- z_stick,
404
- -r_hat[:, 0, 2],
405
- r_hat[:, 0, 1],
406
- r_hat[:, 0, 2],
407
- z_stick,
408
- -r_hat[:, 0, 0],
409
- -r_hat[:, 0, 1],
410
- r_hat[:, 0, 0],
411
- z_stick,
412
- ]
413
- ).reshape([-1, 3, 3])
414
  i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3])
415
  A = np.transpose(r_hat, axes=[0, 2, 1])
416
  B = r_hat
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import os
18
  import pickle
19
+
20
+ import numpy as np
21
  import torch
 
22
 
23
 
24
  class SMPLModel:
 
127
  for i in range(1, self.kintree_table.shape[1]):
128
  G[i] = G[self.parent[i]].dot(
129
  self.with_zeros(
130
+ np.hstack([
131
+ self.R[i],
132
+ ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])),
133
+ ])
 
 
134
  )
135
  )
136
  # remove the transformation due to the rest pose
 
162
  r_hat = r / theta
163
  cos = np.cos(theta)
164
  z_stick = np.zeros(theta.shape[0])
165
+ m = np.dstack([
166
+ z_stick,
167
+ -r_hat[:, 0, 2],
168
+ r_hat[:, 0, 1],
169
+ r_hat[:, 0, 2],
170
+ z_stick,
171
+ -r_hat[:, 0, 0],
172
+ -r_hat[:, 0, 1],
173
+ r_hat[:, 0, 0],
174
+ z_stick,
175
+ ]).reshape([-1, 3, 3])
 
 
176
  i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3])
177
  A = np.transpose(r_hat, axes=[0, 2, 1])
178
  B = r_hat
 
354
  for i in range(1, self.kintree_table.shape[1]):
355
  G[i] = G[self.parent[i]].dot(
356
  self.with_zeros(
357
+ np.hstack([
358
+ self.R[i],
359
+ ((self.J[i, :] - self.J[self.parent[i], :]).reshape([3, 1])),
360
+ ])
 
 
361
  )
362
  )
363
  # remove the transformation due to the rest pose
 
393
  r_hat = r / theta
394
  cos = np.cos(theta)
395
  z_stick = np.zeros(theta.shape[0])
396
+ m = np.dstack([
397
+ z_stick,
398
+ -r_hat[:, 0, 2],
399
+ r_hat[:, 0, 1],
400
+ r_hat[:, 0, 2],
401
+ z_stick,
402
+ -r_hat[:, 0, 0],
403
+ -r_hat[:, 0, 1],
404
+ r_hat[:, 0, 0],
405
+ z_stick,
406
+ ]).reshape([-1, 3, 3])
 
 
407
  i_cube = np.broadcast_to(np.expand_dims(np.eye(3), axis=0), [theta.shape[0], 3, 3])
408
  A = np.transpose(r_hat, axes=[0, 2, 1])
409
  B = r_hat
lib/dataset/mesh_util.py CHANGED
@@ -14,25 +14,25 @@
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import os
 
 
 
18
  import numpy as np
 
19
  import torch
 
20
  import torchvision
21
  import trimesh
22
- import json
23
- import open3d as o3d
24
- import os.path as osp
25
- import _pickle as cPickle
26
- from termcolor import colored
27
  from scipy.spatial import cKDTree
28
 
29
- from pytorch3d.structures import Meshes
30
- import torch.nn.functional as F
31
  import lib.smplx as smplx
32
- from lib.common.render_utils import Pytorch3dRasterizer
33
- from pytorch3d.renderer.mesh import rasterize_meshes
34
- from PIL import Image, ImageFont, ImageDraw
35
- from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
36
 
37
 
38
  class Format:
@@ -74,19 +74,17 @@ class SMPLX:
74
  self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)
75
 
76
  self.smpl_vert_seg = json.load(open(self.smpl_vert_seg_path))
77
- self.smpl_mano_vid = np.concatenate(
78
- [
79
- self.smpl_vert_seg["rightHand"], self.smpl_vert_seg["rightHandIndex1"],
80
- self.smpl_vert_seg["leftHand"], self.smpl_vert_seg["leftHandIndex1"]
81
- ]
82
- )
83
 
84
  self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
85
  self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
86
  self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
87
- self.smplx_mano_vid = np.concatenate(
88
- [self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]]
89
- )
90
  self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
91
  self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]
92
 
@@ -110,26 +108,22 @@ class SMPLX:
110
 
111
  self.model_dir = osp.join(self.current_dir, "models")
112
 
113
- self.ghum_smpl_pairs = torch.tensor(
114
- [
115
- (0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16), (12, 17), (13, 18), (14, 19),
116
- (15, 20), (16, 21), (17, 39), (18, 44), (19, 36), (20, 41), (21, 35), (22, 40),
117
- (23, 1), (24, 2), (25, 4), (26, 5), (27, 7), (28, 8), (29, 31), (30, 34), (31, 29),
118
- (32, 32)
119
- ]
120
- ).long()
121
 
122
  # smpl-smplx correspondence
123
  self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
124
  self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
125
  self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()
126
 
127
- self.extra_joint_ids = np.array(
128
- [
129
- 61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72,
130
- 74, 73
131
- ]
132
- )
133
 
134
  self.extra_joint_ids += 68
135
 
@@ -369,9 +363,9 @@ def mesh_edge_loss(meshes, target_length: float = 0.0):
369
  return loss_all
370
 
371
 
372
- def remesh_laplacian(mesh, obj_path):
373
 
374
- mesh = mesh.simplify_quadratic_decimation(50000)
375
  mesh = trimesh.smoothing.filter_humphrey(
376
  mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None
377
  )
@@ -380,7 +374,7 @@ def remesh_laplacian(mesh, obj_path):
380
  return mesh
381
 
382
 
383
- def poisson(mesh, obj_path, depth=10, decimation=True):
384
 
385
  pcd_path = obj_path[:-4] + "_soups.ply"
386
  assert (mesh.vertex_normals.shape[1] == 3)
@@ -395,12 +389,9 @@ def poisson(mesh, obj_path, depth=10, decimation=True):
395
  largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
396
  largest_mesh.export(obj_path)
397
 
398
- if decimation:
399
- # mesh decimation for faster rendering
400
- low_res_mesh = largest_mesh.simplify_quadratic_decimation(50000)
401
- return low_res_mesh
402
- else:
403
- return largest_mesh
404
 
405
 
406
  # Losses to smooth / regularize the mesh shape
@@ -437,10 +428,9 @@ def read_smpl_constants(folder):
437
  smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1)
438
 
439
  return_dict = {
440
- "smpl_vertex_code": torch.tensor(smpl_vertex_code),
441
- "smpl_face_code": torch.tensor(smpl_face_code),
442
- "smpl_faces": torch.tensor(smpl_faces),
443
- "smpl_tetras": torch.tensor(smpl_tetras)
444
  }
445
 
446
  return return_dict
@@ -598,22 +588,6 @@ def compute_normal(vertices, faces):
598
  return vert_norms, face_norms
599
 
600
 
601
- def face_vertices(vertices, faces):
602
- """
603
- :param vertices: [batch size, number of vertices, 3]
604
- :param faces: [batch size, number of faces, 3]
605
- :return: [batch size, number of faces, 3, 3]
606
- """
607
-
608
- bs, nv = vertices.shape[:2]
609
- bs, nf = faces.shape[:2]
610
- device = vertices.device
611
- faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
612
- vertices = vertices.reshape((bs * nv, vertices.shape[-1]))
613
-
614
- return vertices[faces.long()]
615
-
616
-
617
  def compute_normal_batch(vertices, faces):
618
 
619
  if faces.shape[0] != vertices.shape[0]:
@@ -657,20 +631,18 @@ def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type="smpl"):
657
  draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)
658
 
659
  if type == "smpl":
660
- for col_id, col_txt in enumerate(
661
- [
662
- "image",
663
- "smpl-norm(render)",
664
- "cloth-norm(pred)",
665
- "diff-norm",
666
- "diff-mask",
667
- ]
668
- ):
669
  draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
670
  elif type == "cloth":
671
- for col_id, col_txt in enumerate(
672
- ["image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"]
673
- ):
674
  draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
675
  for col_id, col_txt in enumerate(["0", "90", "180", "270"]):
676
  draw.text(
@@ -751,3 +723,61 @@ def get_joint_mesh(joints, radius=2.0):
751
  else:
752
  combined = sum([combined, ball_new])
753
  return combined
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import json
18
  import os
19
+ import os.path as osp
20
+
21
+ import _pickle as cPickle
22
  import numpy as np
23
+ import open3d as o3d
24
  import torch
25
+ import torch.nn.functional as F
26
  import torchvision
27
  import trimesh
28
+ from PIL import Image, ImageDraw, ImageFont
29
+ from pytorch3d.loss import mesh_laplacian_smoothing, mesh_normal_consistency
30
+ from pytorch3d.renderer.mesh import rasterize_meshes
31
+ from pytorch3d.structures import Meshes
 
32
  from scipy.spatial import cKDTree
33
 
 
 
34
  import lib.smplx as smplx
35
+ from lib.common.render_utils import Pytorch3dRasterizer, face_vertices
 
 
 
36
 
37
 
38
  class Format:
 
74
  self.smplx_vertex_lmkid = np.load(self.smplx_vertex_lmkid_path)
75
 
76
  self.smpl_vert_seg = json.load(open(self.smpl_vert_seg_path))
77
+ self.smpl_mano_vid = np.concatenate([
78
+ self.smpl_vert_seg["rightHand"], self.smpl_vert_seg["rightHandIndex1"],
79
+ self.smpl_vert_seg["leftHand"], self.smpl_vert_seg["leftHandIndex1"]
80
+ ])
 
 
81
 
82
  self.smplx_eyeball_fid_mask = np.load(self.smplx_eyeball_fid_path)
83
  self.smplx_mouth_fid = np.load(self.smplx_fill_mouth_fid_path)
84
  self.smplx_mano_vid_dict = np.load(self.smplx_mano_vid_path, allow_pickle=True)
85
+ self.smplx_mano_vid = np.concatenate([
86
+ self.smplx_mano_vid_dict["left_hand"], self.smplx_mano_vid_dict["right_hand"]
87
+ ])
88
  self.smplx_flame_vid = np.load(self.smplx_flame_vid_path, allow_pickle=True)
89
  self.smplx_front_flame_vid = self.smplx_flame_vid[np.load(self.front_flame_path)]
90
 
 
108
 
109
  self.model_dir = osp.join(self.current_dir, "models")
110
 
111
+ self.ghum_smpl_pairs = torch.tensor([(0, 24), (2, 26), (5, 25), (7, 28), (8, 27), (11, 16),
112
+ (12, 17), (13, 18), (14, 19), (15, 20), (16, 21),
113
+ (17, 39), (18, 44), (19, 36), (20, 41), (21, 35),
114
+ (22, 40), (23, 1), (24, 2), (25, 4), (26, 5), (27, 7),
115
+ (28, 8), (29, 31), (30, 34), (31, 29),
116
+ (32, 32)]).long()
 
 
117
 
118
  # smpl-smplx correspondence
119
  self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
120
  self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [61 + 68, 72 + 68]
121
  self.smpl_joint_ids_45 = np.arange(22).tolist() + [68, 73] + np.arange(55, 76).tolist()
122
 
123
+ self.extra_joint_ids = np.array([
124
+ 61, 72, 66, 69, 58, 68, 57, 56, 64, 59, 67, 75, 70, 65, 60, 61, 63, 62, 76, 71, 72, 74,
125
+ 73
126
+ ])
 
 
127
 
128
  self.extra_joint_ids += 68
129
 
 
363
  return loss_all
364
 
365
 
366
+ def remesh_laplacian(mesh, obj_path, face_count=50000):
367
 
368
+ mesh = mesh.simplify_quadratic_decimation(face_count)
369
  mesh = trimesh.smoothing.filter_humphrey(
370
  mesh, alpha=0.1, beta=0.5, iterations=10, laplacian_operator=None
371
  )
 
374
  return mesh
375
 
376
 
377
+ def poisson(mesh, obj_path, depth=10, face_count=50000):
378
 
379
  pcd_path = obj_path[:-4] + "_soups.ply"
380
  assert (mesh.vertex_normals.shape[1] == 3)
 
389
  largest_mesh = keep_largest(trimesh.Trimesh(np.array(mesh.vertices), np.array(mesh.triangles)))
390
  largest_mesh.export(obj_path)
391
 
392
+ # mesh decimation for faster rendering
393
+ low_res_mesh = largest_mesh.simplify_quadratic_decimation(face_count)
394
+ return low_res_mesh
 
 
 
395
 
396
 
397
  # Losses to smooth / regularize the mesh shape
 
428
  smpl_tetras = (np.loadtxt(os.path.join(folder, "tetrahedrons.txt"), dtype=np.int32) - 1)
429
 
430
  return_dict = {
431
+ "smpl_vertex_code": torch.tensor(smpl_vertex_code), "smpl_face_code":
432
+ torch.tensor(smpl_face_code), "smpl_faces": torch.tensor(smpl_faces), "smpl_tetras":
433
+ torch.tensor(smpl_tetras)
 
434
  }
435
 
436
  return return_dict
 
588
  return vert_norms, face_norms
589
 
590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591
  def compute_normal_batch(vertices, faces):
592
 
593
  if faces.shape[0] != vertices.shape[0]:
 
631
  draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font)
632
 
633
  if type == "smpl":
634
+ for col_id, col_txt in enumerate([
635
+ "image",
636
+ "smpl-norm(render)",
637
+ "cloth-norm(pred)",
638
+ "diff-norm",
639
+ "diff-mask",
640
+ ]):
 
 
641
  draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
642
  elif type == "cloth":
643
+ for col_id, col_txt in enumerate([
644
+ "image", "cloth-norm(recon)", "cloth-norm(pred)", "diff-norm"
645
+ ]):
646
  draw.text((10 + (col_id * grid_size), 5), col_txt, (255, 0, 0), font=font)
647
  for col_id, col_txt in enumerate(["0", "90", "180", "270"]):
648
  draw.text(
 
723
  else:
724
  combined = sum([combined, ball_new])
725
  return combined
726
+
727
+
728
+ def preprocess_point_cloud(pcd, voxel_size):
729
+ pcd_down = pcd
730
+ pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
731
+ pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 5.0, max_nn=100)
732
+ )
733
+ return (pcd_down, pcd_fpfh)
734
+
735
+
736
+ def o3d_ransac(src, dst):
737
+
738
+ voxel_size = 0.01
739
+ distance_threshold = 1.5 * voxel_size
740
+
741
+ o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Error)
742
+
743
+ # print('Downsampling inputs')
744
+ src_down, src_fpfh = preprocess_point_cloud(src, voxel_size)
745
+ dst_down, dst_fpfh = preprocess_point_cloud(dst, voxel_size)
746
+
747
+ # print('Running RANSAC')
748
+ result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
749
+ src_down,
750
+ dst_down,
751
+ src_fpfh,
752
+ dst_fpfh,
753
+ mutual_filter=False,
754
+ max_correspondence_distance=distance_threshold,
755
+ estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
756
+ ransac_n=3,
757
+ checkers=[
758
+ o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9),
759
+ o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(distance_threshold)
760
+ ],
761
+ criteria=o3d.pipelines.registration.RANSACConvergenceCriteria(1000000, 0.999)
762
+ )
763
+
764
+ return result.transformation
765
+
766
+
767
+ def export_obj(v_np, f_np, vt, ft, path):
768
+
769
+ # write mtl info into obj
770
+ new_line = f"mtllib material.mtl \n"
771
+ vt_lines = "\nusemtl mat0 \n"
772
+ v_lines = ""
773
+ f_lines = ""
774
+
775
+ for _v in v_np:
776
+ v_lines += f"v {_v[0]} {_v[1]} {_v[2]}\n"
777
+ for fid, _f in enumerate(f_np):
778
+ f_lines += f"f {_f[0]+1}/{ft[fid][0]+1} {_f[1]+1}/{ft[fid][1]+1} {_f[2]+1}/{ft[fid][2]+1}\n"
779
+ for _vt in vt:
780
+ vt_lines += f"vt {_vt[0]} {_vt[1]}\n"
781
+ new_file_data = new_line + v_lines + vt_lines + f_lines
782
+ with open(path, 'w') as file:
783
+ file.write(new_file_data)
lib/net/BasePIFuNet.py CHANGED
@@ -14,8 +14,8 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import torch.nn as nn
18
  import pytorch_lightning as pl
 
19
 
20
  from .geometry import index, orthogonal, perspective
21
 
 
14
  #
15
  # Contact: [email protected]
16
 
 
17
  import pytorch_lightning as pl
18
+ import torch.nn as nn
19
 
20
  from .geometry import index, orthogonal, perspective
21
 
lib/net/Discriminator.py CHANGED
@@ -1,11 +1,16 @@
1
  """ The code is based on https://github.com/apple/ml-gsn/ with adaption. """
2
 
3
  import math
 
4
  import torch
5
  import torch.nn as nn
6
- import math
7
  import torch.nn.functional as F
8
- from lib.torch_utils.ops.native_ops import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
 
 
 
 
 
9
 
10
 
11
  class DiscriminatorHead(nn.Module):
 
1
  """ The code is based on https://github.com/apple/ml-gsn/ with adaption. """
2
 
3
  import math
4
+
5
  import torch
6
  import torch.nn as nn
 
7
  import torch.nn.functional as F
8
+
9
+ from lib.torch_utils.ops.native_ops import (
10
+ FusedLeakyReLU,
11
+ fused_leaky_relu,
12
+ upfirdn2d,
13
+ )
14
 
15
 
16
  class DiscriminatorHead(nn.Module):
lib/net/FBNet.py CHANGED
@@ -19,13 +19,14 @@ DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
19
  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
20
  OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21
  """
22
- import torch
23
- import torch.nn as nn
24
  import functools
 
25
  import numpy as np
26
  import pytorch_lightning as pl
27
- from torchvision import models
 
28
  import torch.nn.functional as F
 
29
 
30
 
31
  ###############################################################################
@@ -313,34 +314,28 @@ class NLayerDiscriminator(nn.Module):
313
 
314
  kw = 4
315
  padw = int(np.ceil((kw - 1.0) / 2))
316
- sequence = [
317
- [
318
- nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
319
- nn.LeakyReLU(0.2, True)
320
- ]
321
- ]
322
 
323
  nf = ndf
324
  for n in range(1, n_layers):
325
  nf_prev = nf
326
  nf = min(nf * 2, 512)
327
- sequence += [
328
- [
329
- nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
330
- norm_layer(nf),
331
- nn.LeakyReLU(0.2, True)
332
- ]
333
- ]
334
 
335
  nf_prev = nf
336
  nf = min(nf * 2, 512)
337
- sequence += [
338
- [
339
- nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
340
- norm_layer(nf),
341
- nn.LeakyReLU(0.2, True)
342
- ]
343
- ]
344
 
345
  sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
346
 
@@ -632,18 +627,16 @@ class GANLoss(pl.LightningModule):
632
  def get_target_tensor(self, input, target_is_real):
633
  target_tensor = None
634
  if target_is_real:
635
- create_label = (
636
- (self.real_label_var is None) or (self.real_label_var.numel() != input.numel())
637
- )
638
  if create_label:
639
  real_tensor = self.tensor(input.size()).fill_(self.real_label)
640
  self.real_label_var = real_tensor
641
  self.real_label_var.requires_grad = False
642
  target_tensor = self.real_label_var
643
  else:
644
- create_label = (
645
- (self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())
646
- )
647
  if create_label:
648
  fake_tensor = self.tensor(input.size()).fill_(self.fake_label)
649
  self.fake_label_var = fake_tensor
 
19
  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
20
  OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21
  """
 
 
22
  import functools
23
+
24
  import numpy as np
25
  import pytorch_lightning as pl
26
+ import torch
27
+ import torch.nn as nn
28
  import torch.nn.functional as F
29
+ from torchvision import models
30
 
31
 
32
  ###############################################################################
 
314
 
315
  kw = 4
316
  padw = int(np.ceil((kw - 1.0) / 2))
317
+ sequence = [[
318
+ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
319
+ nn.LeakyReLU(0.2, True)
320
+ ]]
 
 
321
 
322
  nf = ndf
323
  for n in range(1, n_layers):
324
  nf_prev = nf
325
  nf = min(nf * 2, 512)
326
+ sequence += [[
327
+ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
328
+ norm_layer(nf),
329
+ nn.LeakyReLU(0.2, True)
330
+ ]]
 
 
331
 
332
  nf_prev = nf
333
  nf = min(nf * 2, 512)
334
+ sequence += [[
335
+ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
336
+ norm_layer(nf),
337
+ nn.LeakyReLU(0.2, True)
338
+ ]]
 
 
339
 
340
  sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
341
 
 
627
  def get_target_tensor(self, input, target_is_real):
628
  target_tensor = None
629
  if target_is_real:
630
+ create_label = ((self.real_label_var is None) or
631
+ (self.real_label_var.numel() != input.numel()))
 
632
  if create_label:
633
  real_tensor = self.tensor(input.size()).fill_(self.real_label)
634
  self.real_label_var = real_tensor
635
  self.real_label_var.requires_grad = False
636
  target_tensor = self.real_label_var
637
  else:
638
+ create_label = ((self.fake_label_var is None) or
639
+ (self.fake_label_var.numel() != input.numel()))
 
640
  if create_label:
641
  fake_tensor = self.tensor(input.size()).fill_(self.fake_label)
642
  self.fake_label_var = fake_tensor
lib/net/GANLoss.py CHANGED
@@ -2,8 +2,9 @@
2
 
3
  import torch
4
  import torch.nn as nn
5
- from torch import autograd
6
  import torch.nn.functional as F
 
 
7
  from lib.net.Discriminator import StyleDiscriminator
8
 
9
 
 
2
 
3
  import torch
4
  import torch.nn as nn
 
5
  import torch.nn.functional as F
6
+ from torch import autograd
7
+
8
  from lib.net.Discriminator import StyleDiscriminator
9
 
10
 
lib/net/IFGeoNet.py CHANGED
@@ -1,7 +1,9 @@
1
  from pickle import TRUE
 
2
  import torch
3
  import torch.nn as nn
4
  import torch.nn.functional as F
 
5
  from lib.net.geometry import orthogonal
6
 
7
 
@@ -151,13 +153,11 @@ class IFGeoNet(nn.Module):
151
 
152
  # here every channel corresponse to one feature.
153
 
154
- features = torch.cat(
155
- (
156
- feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4, feature_5,
157
- feature_6
158
- ),
159
- dim=1
160
- ) # (B, features, 1,7,sample_num)
161
  shape = features.shape
162
  features = torch.reshape(
163
  features, (shape[0], shape[1] * shape[3], shape[4])
 
1
  from pickle import TRUE
2
+
3
  import torch
4
  import torch.nn as nn
5
  import torch.nn.functional as F
6
+
7
  from lib.net.geometry import orthogonal
8
 
9
 
 
153
 
154
  # here every channel corresponse to one feature.
155
 
156
+ features = torch.cat((
157
+ feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4, feature_5,
158
+ feature_6
159
+ ),
160
+ dim=1) # (B, features, 1,7,sample_num)
 
 
161
  shape = features.shape
162
  features = torch.reshape(
163
  features, (shape[0], shape[1] * shape[3], shape[4])
lib/net/IFGeoNet_nobody.py CHANGED
@@ -1,7 +1,9 @@
1
  from pickle import TRUE
 
2
  import torch
3
  import torch.nn as nn
4
  import torch.nn.functional as F
 
5
  from lib.net.geometry import orthogonal
6
 
7
 
@@ -136,13 +138,11 @@ class IFGeoNet(nn.Module):
136
 
137
  # here every channel corresponse to one feature.
138
 
139
- features = torch.cat(
140
- (
141
- feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4, feature_5,
142
- feature_6
143
- ),
144
- dim=1
145
- ) # (B, features, 1,7,sample_num)
146
  shape = features.shape
147
  features = torch.reshape(
148
  features, (shape[0], shape[1] * shape[3], shape[4])
 
1
  from pickle import TRUE
2
+
3
  import torch
4
  import torch.nn as nn
5
  import torch.nn.functional as F
6
+
7
  from lib.net.geometry import orthogonal
8
 
9
 
 
138
 
139
  # here every channel corresponse to one feature.
140
 
141
+ features = torch.cat((
142
+ feature_0_partial, feature_1_fused, feature_2, feature_3, feature_4, feature_5,
143
+ feature_6
144
+ ),
145
+ dim=1) # (B, features, 1,7,sample_num)
 
 
146
  shape = features.shape
147
  features = torch.reshape(
148
  features, (shape[0], shape[1] * shape[3], shape[4])
lib/net/NormalNet.py CHANGED
@@ -14,14 +14,14 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- from lib.net.FBNet import define_G, define_D, VGGLoss, GANLoss, IDMRFLoss
18
- from lib.net.net_util import init_net
19
- from lib.net.BasePIFuNet import BasePIFuNet
20
-
21
  import torch
22
  import torch.nn as nn
23
  import torch.nn.functional as F
24
 
 
 
 
 
25
 
26
  class NormalNet(BasePIFuNet):
27
  """
@@ -63,12 +63,12 @@ class NormalNet(BasePIFuNet):
63
  self.in_nmlB = [
64
  item[0] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
65
  ]
66
- self.in_nmlF_dim = sum(
67
- [item[1] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"]
68
- )
69
- self.in_nmlB_dim = sum(
70
- [item[1] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"]
71
- )
72
 
73
  self.netF = define_G(self.in_nmlF_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
74
  self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
 
 
17
  import torch
18
  import torch.nn as nn
19
  import torch.nn.functional as F
20
 
21
+ from lib.net.BasePIFuNet import BasePIFuNet
22
+ from lib.net.FBNet import GANLoss, IDMRFLoss, VGGLoss, define_D, define_G
23
+ from lib.net.net_util import init_net
24
+
25
 
26
  class NormalNet(BasePIFuNet):
27
  """
 
63
  self.in_nmlB = [
64
  item[0] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
65
  ]
66
+ self.in_nmlF_dim = sum([
67
+ item[1] for item in self.opt.in_nml if "_F" in item[0] or item[0] == "image"
68
+ ])
69
+ self.in_nmlB_dim = sum([
70
+ item[1] for item in self.opt.in_nml if "_B" in item[0] or item[0] == "image"
71
+ ])
72
 
73
  self.netF = define_G(self.in_nmlF_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
74
  self.netB = define_G(self.in_nmlB_dim, 3, 64, "global", 4, 9, 1, 3, "instance")
lib/net/geometry.py CHANGED
@@ -14,11 +14,13 @@
14
  #
15
  # Contact: [email protected]
16
 
17
- import torch
18
- import numpy as np
19
  import numbers
20
- from torch.nn import functional as F
 
 
21
  from einops.einops import rearrange
 
 
22
  """
23
  Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
24
  Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
@@ -42,13 +44,11 @@ def quaternion_to_rotation_matrix(quat):
42
  wx, wy, wz = w * x, w * y, w * z
43
  xy, xz, yz = x * y, x * z, y * z
44
 
45
- rotMat = torch.stack(
46
- [
47
- w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2,
48
- 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2
49
- ],
50
- dim=1
51
- ).view(B, 3, 3)
52
  return rotMat
53
 
54
 
@@ -508,12 +508,10 @@ def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_si
508
  weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
509
 
510
  # least squares
511
- Q = np.array(
512
- [
513
- F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints),
514
- O - np.reshape(joints_2d, -1)
515
- ]
516
- ).T
517
  c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
518
 
519
  # weighted least squares
@@ -580,13 +578,11 @@ def Rot_y(angle, category="torch", prepend_dim=True, device=None):
580
  prepend_dim: prepend an extra dimension
581
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
582
  """
583
- m = np.array(
584
- [
585
- [np.cos(angle), 0.0, np.sin(angle)],
586
- [0.0, 1.0, 0.0],
587
- [-np.sin(angle), 0.0, np.cos(angle)],
588
- ]
589
- )
590
  if category == "torch":
591
  if prepend_dim:
592
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
@@ -608,13 +604,11 @@ def Rot_x(angle, category="torch", prepend_dim=True, device=None):
608
  prepend_dim: prepend an extra dimension
609
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
610
  """
611
- m = np.array(
612
- [
613
- [1.0, 0.0, 0.0],
614
- [0.0, np.cos(angle), -np.sin(angle)],
615
- [0.0, np.sin(angle), np.cos(angle)],
616
- ]
617
- )
618
  if category == "torch":
619
  if prepend_dim:
620
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
@@ -636,13 +630,11 @@ def Rot_z(angle, category="torch", prepend_dim=True, device=None):
636
  prepend_dim: prepend an extra dimension
637
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
638
  """
639
- m = np.array(
640
- [
641
- [np.cos(angle), -np.sin(angle), 0.0],
642
- [np.sin(angle), np.cos(angle), 0.0],
643
- [0.0, 0.0, 1.0],
644
- ]
645
- )
646
  if category == "torch":
647
  if prepend_dim:
648
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
 
14
  #
15
  # Contact: [email protected]
16
 
 
 
17
  import numbers
18
+
19
+ import numpy as np
20
+ import torch
21
  from einops.einops import rearrange
22
+ from torch.nn import functional as F
23
+
24
  """
25
  Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula
26
  Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR
 
44
  wx, wy, wz = w * x, w * y, w * z
45
  xy, xz, yz = x * y, x * z, y * z
46
 
47
+ rotMat = torch.stack([
48
+ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2,
49
+ 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2
50
+ ],
51
+ dim=1).view(B, 3, 3)
 
 
52
  return rotMat
53
 
54
 
 
508
  weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1)
509
 
510
  # least squares
511
+ Q = np.array([
512
+ F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints),
513
+ O - np.reshape(joints_2d, -1)
514
+ ]).T
 
 
515
  c = (np.reshape(joints_2d, -1) - O) * Z - F * XY
516
 
517
  # weighted least squares
 
578
  prepend_dim: prepend an extra dimension
579
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
580
  """
581
+ m = np.array([
582
+ [np.cos(angle), 0.0, np.sin(angle)],
583
+ [0.0, 1.0, 0.0],
584
+ [-np.sin(angle), 0.0, np.cos(angle)],
585
+ ])
 
 
586
  if category == "torch":
587
  if prepend_dim:
588
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
 
604
  prepend_dim: prepend an extra dimension
605
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
606
  """
607
+ m = np.array([
608
+ [1.0, 0.0, 0.0],
609
+ [0.0, np.cos(angle), -np.sin(angle)],
610
+ [0.0, np.sin(angle), np.cos(angle)],
611
+ ])
 
 
612
  if category == "torch":
613
  if prepend_dim:
614
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
 
630
  prepend_dim: prepend an extra dimension
631
  Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True)
632
  """
633
+ m = np.array([
634
+ [np.cos(angle), -np.sin(angle), 0.0],
635
+ [np.sin(angle), np.cos(angle), 0.0],
636
+ [0.0, 0.0, 1.0],
637
+ ])
 
 
638
  if category == "torch":
639
  if prepend_dim:
640
  return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0)
lib/net/net_util.py CHANGED
@@ -14,12 +14,13 @@
14
  #
15
  # Contact: [email protected]
16
 
 
 
17
  import torch
18
- from torch.nn import init
19
  import torch.nn as nn
20
  import torch.nn.functional as F
21
- import functools
22
  from torch.autograd import grad
 
23
 
24
 
25
  def gradient(inputs, outputs):
 
14
  #
15
  # Contact: [email protected]
16
 
17
+ import functools
18
+
19
  import torch
 
20
  import torch.nn as nn
21
  import torch.nn.functional as F
 
22
  from torch.autograd import grad
23
+ from torch.nn import init
24
 
25
 
26
  def gradient(inputs, outputs):
lib/net/voxelize.py CHANGED
@@ -1,11 +1,11 @@
1
  from __future__ import division, print_function
 
 
2
  import torch
3
  import torch.nn as nn
4
  import torch.nn.functional as F
5
- import numpy as np
6
- from torch.autograd import Function
7
-
8
  import voxelize_cuda
 
9
 
10
 
11
  class VoxelizationFunction(Function):
 
1
  from __future__ import division, print_function
2
+
3
+ import numpy as np
4
  import torch
5
  import torch.nn as nn
6
  import torch.nn.functional as F
 
 
 
7
  import voxelize_cuda
8
+ from torch.autograd import Function
9
 
10
 
11
  class VoxelizationFunction(Function):
lib/pixielib/models/FLAME.py CHANGED
@@ -13,10 +13,11 @@
13
  # For comments or questions, please email us at [email protected]
14
  # For commercial licensing contact, please contact [email protected]
15
 
 
 
 
16
  import torch
17
  import torch.nn as nn
18
- import numpy as np
19
- import pickle
20
  import torch.nn.functional as F
21
 
22
 
 
13
  # For comments or questions, please email us at [email protected]
14
  # For commercial licensing contact, please contact [email protected]
15
 
16
+ import pickle
17
+
18
+ import numpy as np
19
  import torch
20
  import torch.nn as nn
 
 
21
  import torch.nn.functional as F
22
 
23
 
lib/pixielib/models/SMPLX.py CHANGED
@@ -3,19 +3,20 @@ original from https://github.com/vchoutas/smplx
3
  modified by Vassilis and Yao
4
  """
5
 
 
 
 
6
  import torch
7
  import torch.nn as nn
8
- import numpy as np
9
- import pickle
10
 
11
  from .lbs import (
 
12
  Struct,
13
- to_tensor,
14
- to_np,
15
  lbs,
 
 
16
  vertices2landmarks,
17
- JointsFromVerticesSelector,
18
- find_dynamic_lmk_idx_and_bcoords,
19
  )
20
 
21
  # SMPLX
@@ -209,468 +210,452 @@ extra_names = [
209
  SMPLX_names += extra_names
210
 
211
  part_indices = {}
212
- part_indices["body"] = np.array(
213
- [
214
- 0,
215
- 1,
216
- 2,
217
- 3,
218
- 4,
219
- 5,
220
- 6,
221
- 7,
222
- 8,
223
- 9,
224
- 10,
225
- 11,
226
- 12,
227
- 13,
228
- 14,
229
- 15,
230
- 16,
231
- 17,
232
- 18,
233
- 19,
234
- 20,
235
- 21,
236
- 22,
237
- 23,
238
- 24,
239
- 123,
240
- 124,
241
- 125,
242
- 126,
243
- 127,
244
- 132,
245
- 134,
246
- 135,
247
- 136,
248
- 137,
249
- 138,
250
- 143,
251
- ]
252
- )
253
- part_indices["torso"] = np.array(
254
- [
255
- 0,
256
- 1,
257
- 2,
258
- 3,
259
- 6,
260
- 9,
261
- 12,
262
- 13,
263
- 14,
264
- 15,
265
- 16,
266
- 17,
267
- 18,
268
- 19,
269
- 22,
270
- 23,
271
- 24,
272
- 55,
273
- 56,
274
- 57,
275
- 58,
276
- 59,
277
- 76,
278
- 77,
279
- 78,
280
- 79,
281
- 80,
282
- 81,
283
- 82,
284
- 83,
285
- 84,
286
- 85,
287
- 86,
288
- 87,
289
- 88,
290
- 89,
291
- 90,
292
- 91,
293
- 92,
294
- 93,
295
- 94,
296
- 95,
297
- 96,
298
- 97,
299
- 98,
300
- 99,
301
- 100,
302
- 101,
303
- 102,
304
- 103,
305
- 104,
306
- 105,
307
- 106,
308
- 107,
309
- 108,
310
- 109,
311
- 110,
312
- 111,
313
- 112,
314
- 113,
315
- 114,
316
- 115,
317
- 116,
318
- 117,
319
- 118,
320
- 119,
321
- 120,
322
- 121,
323
- 122,
324
- 123,
325
- 124,
326
- 125,
327
- 126,
328
- 127,
329
- 128,
330
- 129,
331
- 130,
332
- 131,
333
- 132,
334
- 133,
335
- 134,
336
- 135,
337
- 136,
338
- 137,
339
- 138,
340
- 139,
341
- 140,
342
- 141,
343
- 142,
344
- 143,
345
- 144,
346
- ]
347
- )
348
- part_indices["head"] = np.array(
349
- [
350
- 12,
351
- 15,
352
- 22,
353
- 23,
354
- 24,
355
- 55,
356
- 56,
357
- 57,
358
- 58,
359
- 59,
360
- 60,
361
- 61,
362
- 62,
363
- 63,
364
- 64,
365
- 65,
366
- 66,
367
- 67,
368
- 68,
369
- 69,
370
- 70,
371
- 71,
372
- 72,
373
- 73,
374
- 74,
375
- 75,
376
- 76,
377
- 77,
378
- 78,
379
- 79,
380
- 80,
381
- 81,
382
- 82,
383
- 83,
384
- 84,
385
- 85,
386
- 86,
387
- 87,
388
- 88,
389
- 89,
390
- 90,
391
- 91,
392
- 92,
393
- 93,
394
- 94,
395
- 95,
396
- 96,
397
- 97,
398
- 98,
399
- 99,
400
- 100,
401
- 101,
402
- 102,
403
- 103,
404
- 104,
405
- 105,
406
- 106,
407
- 107,
408
- 108,
409
- 109,
410
- 110,
411
- 111,
412
- 112,
413
- 113,
414
- 114,
415
- 115,
416
- 116,
417
- 117,
418
- 118,
419
- 119,
420
- 120,
421
- 121,
422
- 122,
423
- 123,
424
- 125,
425
- 126,
426
- 134,
427
- 136,
428
- 137,
429
- ]
430
- )
431
- part_indices["face"] = np.array(
432
- [
433
- 55,
434
- 56,
435
- 57,
436
- 58,
437
- 59,
438
- 60,
439
- 61,
440
- 62,
441
- 63,
442
- 64,
443
- 65,
444
- 66,
445
- 67,
446
- 68,
447
- 69,
448
- 70,
449
- 71,
450
- 72,
451
- 73,
452
- 74,
453
- 75,
454
- 76,
455
- 77,
456
- 78,
457
- 79,
458
- 80,
459
- 81,
460
- 82,
461
- 83,
462
- 84,
463
- 85,
464
- 86,
465
- 87,
466
- 88,
467
- 89,
468
- 90,
469
- 91,
470
- 92,
471
- 93,
472
- 94,
473
- 95,
474
- 96,
475
- 97,
476
- 98,
477
- 99,
478
- 100,
479
- 101,
480
- 102,
481
- 103,
482
- 104,
483
- 105,
484
- 106,
485
- 107,
486
- 108,
487
- 109,
488
- 110,
489
- 111,
490
- 112,
491
- 113,
492
- 114,
493
- 115,
494
- 116,
495
- 117,
496
- 118,
497
- 119,
498
- 120,
499
- 121,
500
- 122,
501
- ]
502
- )
503
- part_indices["upper"] = np.array(
504
- [
505
- 12,
506
- 13,
507
- 14,
508
- 55,
509
- 56,
510
- 57,
511
- 58,
512
- 59,
513
- 60,
514
- 61,
515
- 62,
516
- 63,
517
- 64,
518
- 65,
519
- 66,
520
- 67,
521
- 68,
522
- 69,
523
- 70,
524
- 71,
525
- 72,
526
- 73,
527
- 74,
528
- 75,
529
- 76,
530
- 77,
531
- 78,
532
- 79,
533
- 80,
534
- 81,
535
- 82,
536
- 83,
537
- 84,
538
- 85,
539
- 86,
540
- 87,
541
- 88,
542
- 89,
543
- 90,
544
- 91,
545
- 92,
546
- 93,
547
- 94,
548
- 95,
549
- 96,
550
- 97,
551
- 98,
552
- 99,
553
- 100,
554
- 101,
555
- 102,
556
- 103,
557
- 104,
558
- 105,
559
- 106,
560
- 107,
561
- 108,
562
- 109,
563
- 110,
564
- 111,
565
- 112,
566
- 113,
567
- 114,
568
- 115,
569
- 116,
570
- 117,
571
- 118,
572
- 119,
573
- 120,
574
- 121,
575
- 122,
576
- ]
577
- )
578
- part_indices["hand"] = np.array(
579
- [
580
- 20,
581
- 21,
582
- 25,
583
- 26,
584
- 27,
585
- 28,
586
- 29,
587
- 30,
588
- 31,
589
- 32,
590
- 33,
591
- 34,
592
- 35,
593
- 36,
594
- 37,
595
- 38,
596
- 39,
597
- 40,
598
- 41,
599
- 42,
600
- 43,
601
- 44,
602
- 45,
603
- 46,
604
- 47,
605
- 48,
606
- 49,
607
- 50,
608
- 51,
609
- 52,
610
- 53,
611
- 54,
612
- 128,
613
- 129,
614
- 130,
615
- 131,
616
- 133,
617
- 139,
618
- 140,
619
- 141,
620
- 142,
621
- 144,
622
- ]
623
- )
624
- part_indices["left_hand"] = np.array(
625
- [
626
- 20,
627
- 25,
628
- 26,
629
- 27,
630
- 28,
631
- 29,
632
- 30,
633
- 31,
634
- 32,
635
- 33,
636
- 34,
637
- 35,
638
- 36,
639
- 37,
640
- 38,
641
- 39,
642
- 128,
643
- 129,
644
- 130,
645
- 131,
646
- 133,
647
- ]
648
- )
649
- part_indices["right_hand"] = np.array(
650
- [
651
- 21,
652
- 40,
653
- 41,
654
- 42,
655
- 43,
656
- 44,
657
- 45,
658
- 46,
659
- 47,
660
- 48,
661
- 49,
662
- 50,
663
- 51,
664
- 52,
665
- 53,
666
- 54,
667
- 139,
668
- 140,
669
- 141,
670
- 142,
671
- 144,
672
- ]
673
- )
674
  # kinematic tree
675
  head_kin_chain = [15, 12, 9, 6, 3, 0]
676
 
 
3
  modified by Vassilis and Yao
4
  """
5
 
6
+ import pickle
7
+
8
+ import numpy as np
9
  import torch
10
  import torch.nn as nn
 
 
11
 
12
  from .lbs import (
13
+ JointsFromVerticesSelector,
14
  Struct,
15
+ find_dynamic_lmk_idx_and_bcoords,
 
16
  lbs,
17
+ to_np,
18
+ to_tensor,
19
  vertices2landmarks,
 
 
20
  )
21
 
22
  # SMPLX
 
210
  SMPLX_names += extra_names
211
 
212
  part_indices = {}
213
+ part_indices["body"] = np.array([
214
+ 0,
215
+ 1,
216
+ 2,
217
+ 3,
218
+ 4,
219
+ 5,
220
+ 6,
221
+ 7,
222
+ 8,
223
+ 9,
224
+ 10,
225
+ 11,
226
+ 12,
227
+ 13,
228
+ 14,
229
+ 15,
230
+ 16,
231
+ 17,
232
+ 18,
233
+ 19,
234
+ 20,
235
+ 21,
236
+ 22,
237
+ 23,
238
+ 24,
239
+ 123,
240
+ 124,
241
+ 125,
242
+ 126,
243
+ 127,
244
+ 132,
245
+ 134,
246
+ 135,
247
+ 136,
248
+ 137,
249
+ 138,
250
+ 143,
251
+ ])
252
+ part_indices["torso"] = np.array([
253
+ 0,
254
+ 1,
255
+ 2,
256
+ 3,
257
+ 6,
258
+ 9,
259
+ 12,
260
+ 13,
261
+ 14,
262
+ 15,
263
+ 16,
264
+ 17,
265
+ 18,
266
+ 19,
267
+ 22,
268
+ 23,
269
+ 24,
270
+ 55,
271
+ 56,
272
+ 57,
273
+ 58,
274
+ 59,
275
+ 76,
276
+ 77,
277
+ 78,
278
+ 79,
279
+ 80,
280
+ 81,
281
+ 82,
282
+ 83,
283
+ 84,
284
+ 85,
285
+ 86,
286
+ 87,
287
+ 88,
288
+ 89,
289
+ 90,
290
+ 91,
291
+ 92,
292
+ 93,
293
+ 94,
294
+ 95,
295
+ 96,
296
+ 97,
297
+ 98,
298
+ 99,
299
+ 100,
300
+ 101,
301
+ 102,
302
+ 103,
303
+ 104,
304
+ 105,
305
+ 106,
306
+ 107,
307
+ 108,
308
+ 109,
309
+ 110,
310
+ 111,
311
+ 112,
312
+ 113,
313
+ 114,
314
+ 115,
315
+ 116,
316
+ 117,
317
+ 118,
318
+ 119,
319
+ 120,
320
+ 121,
321
+ 122,
322
+ 123,
323
+ 124,
324
+ 125,
325
+ 126,
326
+ 127,
327
+ 128,
328
+ 129,
329
+ 130,
330
+ 131,
331
+ 132,
332
+ 133,
333
+ 134,
334
+ 135,
335
+ 136,
336
+ 137,
337
+ 138,
338
+ 139,
339
+ 140,
340
+ 141,
341
+ 142,
342
+ 143,
343
+ 144,
344
+ ])
345
+ part_indices["head"] = np.array([
346
+ 12,
347
+ 15,
348
+ 22,
349
+ 23,
350
+ 24,
351
+ 55,
352
+ 56,
353
+ 57,
354
+ 58,
355
+ 59,
356
+ 60,
357
+ 61,
358
+ 62,
359
+ 63,
360
+ 64,
361
+ 65,
362
+ 66,
363
+ 67,
364
+ 68,
365
+ 69,
366
+ 70,
367
+ 71,
368
+ 72,
369
+ 73,
370
+ 74,
371
+ 75,
372
+ 76,
373
+ 77,
374
+ 78,
375
+ 79,
376
+ 80,
377
+ 81,
378
+ 82,
379
+ 83,
380
+ 84,
381
+ 85,
382
+ 86,
383
+ 87,
384
+ 88,
385
+ 89,
386
+ 90,
387
+ 91,
388
+ 92,
389
+ 93,
390
+ 94,
391
+ 95,
392
+ 96,
393
+ 97,
394
+ 98,
395
+ 99,
396
+ 100,
397
+ 101,
398
+ 102,
399
+ 103,
400
+ 104,
401
+ 105,
402
+ 106,
403
+ 107,
404
+ 108,
405
+ 109,
406
+ 110,
407
+ 111,
408
+ 112,
409
+ 113,
410
+ 114,
411
+ 115,
412
+ 116,
413
+ 117,
414
+ 118,
415
+ 119,
416
+ 120,
417
+ 121,
418
+ 122,
419
+ 123,
420
+ 125,
421
+ 126,
422
+ 134,
423
+ 136,
424
+ 137,
425
+ ])
426
+ part_indices["face"] = np.array([
427
+ 55,
428
+ 56,
429
+ 57,
430
+ 58,
431
+ 59,
432
+ 60,
433
+ 61,
434
+ 62,
435
+ 63,
436
+ 64,
437
+ 65,
438
+ 66,
439
+ 67,
440
+ 68,
441
+ 69,
442
+ 70,
443
+ 71,
444
+ 72,
445
+ 73,
446
+ 74,
447
+ 75,
448
+ 76,
449
+ 77,
450
+ 78,
451
+ 79,
452
+ 80,
453
+ 81,
454
+ 82,
455
+ 83,
456
+ 84,
457
+ 85,
458
+ 86,
459
+ 87,
460
+ 88,
461
+ 89,
462
+ 90,
463
+ 91,
464
+ 92,
465
+ 93,
466
+ 94,
467
+ 95,
468
+ 96,
469
+ 97,
470
+ 98,
471
+ 99,
472
+ 100,
473
+ 101,
474
+ 102,
475
+ 103,
476
+ 104,
477
+ 105,
478
+ 106,
479
+ 107,
480
+ 108,
481
+ 109,
482
+ 110,
483
+ 111,
484
+ 112,
485
+ 113,
486
+ 114,
487
+ 115,
488
+ 116,
489
+ 117,
490
+ 118,
491
+ 119,
492
+ 120,
493
+ 121,
494
+ 122,
495
+ ])
496
+ part_indices["upper"] = np.array([
497
+ 12,
498
+ 13,
499
+ 14,
500
+ 55,
501
+ 56,
502
+ 57,
503
+ 58,
504
+ 59,
505
+ 60,
506
+ 61,
507
+ 62,
508
+ 63,
509
+ 64,
510
+ 65,
511
+ 66,
512
+ 67,
513
+ 68,
514
+ 69,
515
+ 70,
516
+ 71,
517
+ 72,
518
+ 73,
519
+ 74,
520
+ 75,
521
+ 76,
522
+ 77,
523
+ 78,
524
+ 79,
525
+ 80,
526
+ 81,
527
+ 82,
528
+ 83,
529
+ 84,
530
+ 85,
531
+ 86,
532
+ 87,
533
+ 88,
534
+ 89,
535
+ 90,
536
+ 91,
537
+ 92,
538
+ 93,
539
+ 94,
540
+ 95,
541
+ 96,
542
+ 97,
543
+ 98,
544
+ 99,
545
+ 100,
546
+ 101,
547
+ 102,
548
+ 103,
549
+ 104,
550
+ 105,
551
+ 106,
552
+ 107,
553
+ 108,
554
+ 109,
555
+ 110,
556
+ 111,
557
+ 112,
558
+ 113,
559
+ 114,
560
+ 115,
561
+ 116,
562
+ 117,
563
+ 118,
564
+ 119,
565
+ 120,
566
+ 121,
567
+ 122,
568
+ ])
569
+ part_indices["hand"] = np.array([
570
+ 20,
571
+ 21,
572
+ 25,
573
+ 26,
574
+ 27,
575
+ 28,
576
+ 29,
577
+ 30,
578
+ 31,
579
+ 32,
580
+ 33,
581
+ 34,
582
+ 35,
583
+ 36,
584
+ 37,
585
+ 38,
586
+ 39,
587
+ 40,
588
+ 41,
589
+ 42,
590
+ 43,
591
+ 44,
592
+ 45,
593
+ 46,
594
+ 47,
595
+ 48,
596
+ 49,
597
+ 50,
598
+ 51,
599
+ 52,
600
+ 53,
601
+ 54,
602
+ 128,
603
+ 129,
604
+ 130,
605
+ 131,
606
+ 133,
607
+ 139,
608
+ 140,
609
+ 141,
610
+ 142,
611
+ 144,
612
+ ])
613
+ part_indices["left_hand"] = np.array([
614
+ 20,
615
+ 25,
616
+ 26,
617
+ 27,
618
+ 28,
619
+ 29,
620
+ 30,
621
+ 31,
622
+ 32,
623
+ 33,
624
+ 34,
625
+ 35,
626
+ 36,
627
+ 37,
628
+ 38,
629
+ 39,
630
+ 128,
631
+ 129,
632
+ 130,
633
+ 131,
634
+ 133,
635
+ ])
636
+ part_indices["right_hand"] = np.array([
637
+ 21,
638
+ 40,
639
+ 41,
640
+ 42,
641
+ 43,
642
+ 44,
643
+ 45,
644
+ 46,
645
+ 47,
646
+ 48,
647
+ 49,
648
+ 50,
649
+ 51,
650
+ 52,
651
+ 53,
652
+ 54,
653
+ 139,
654
+ 140,
655
+ 141,
656
+ 142,
657
+ 144,
658
+ ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659
  # kinematic tree
660
  head_kin_chain = [15, 12, 9, 6, 3, 0]
661
 
lib/pixielib/models/encoders.py CHANGED
@@ -1,6 +1,6 @@
1
  import numpy as np
2
- import torch.nn as nn
3
  import torch
 
4
  import torch.nn.functional as F
5
 
6
 
 
1
  import numpy as np
 
2
  import torch
3
+ import torch.nn as nn
4
  import torch.nn.functional as F
5
 
6