File size: 32,145 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
import math
import threading
from collections import Counter
from typing import Optional, cast

from flask import Flask, current_app

from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.agent_entities import PlanningStrategy
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document
from core.rag.rerank.rerank_type import RerankMode
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService

default_retrieval_model = {
    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
    "reranking_enable": False,
    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
    "top_k": 2,
    "score_threshold_enabled": False,
}


class DatasetRetrieval:
    def __init__(self, application_generate_entity=None):
        self.application_generate_entity = application_generate_entity

    def retrieve(
        self,
        app_id: str,
        user_id: str,
        tenant_id: str,
        model_config: ModelConfigWithCredentialsEntity,
        config: DatasetEntity,
        query: str,
        invoke_from: InvokeFrom,
        show_retrieve_source: bool,
        hit_callback: DatasetIndexToolCallbackHandler,
        message_id: str,
        memory: Optional[TokenBufferMemory] = None,
    ) -> Optional[str]:
        """
        Retrieve dataset.
        :param app_id: app_id
        :param user_id: user_id
        :param tenant_id: tenant id
        :param model_config: model config
        :param config: dataset config
        :param query: query
        :param invoke_from: invoke from
        :param show_retrieve_source: show retrieve source
        :param hit_callback: hit callback
        :param message_id: message id
        :param memory: memory
        :return:
        """
        dataset_ids = config.dataset_ids
        if len(dataset_ids) == 0:
            return None
        retrieve_config = config.retrieve_config

        # check model is support tool calling
        model_type_instance = model_config.provider_model_bundle.model_type_instance
        model_type_instance = cast(LargeLanguageModel, model_type_instance)

        model_manager = ModelManager()
        model_instance = model_manager.get_model_instance(
            tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
        )

        # get model schema
        model_schema = model_type_instance.get_model_schema(
            model=model_config.model, credentials=model_config.credentials
        )

        if not model_schema:
            return None

        planning_strategy = PlanningStrategy.REACT_ROUTER
        features = model_schema.features
        if features:
            if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
                planning_strategy = PlanningStrategy.ROUTER
        available_datasets = []
        for dataset_id in dataset_ids:
            # get dataset from dataset id
            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

            # pass if dataset is not available
            if not dataset:
                continue

            # pass if dataset is not available
            if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
                continue

            available_datasets.append(dataset)
        all_documents = []
        user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
            all_documents = self.single_retrieve(
                app_id,
                tenant_id,
                user_id,
                user_from,
                available_datasets,
                query,
                model_instance,
                model_config,
                planning_strategy,
                message_id,
            )
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
            all_documents = self.multiple_retrieve(
                app_id,
                tenant_id,
                user_id,
                user_from,
                available_datasets,
                query,
                retrieve_config.top_k,
                retrieve_config.score_threshold,
                retrieve_config.rerank_mode,
                retrieve_config.reranking_model,
                retrieve_config.weights,
                retrieve_config.reranking_enabled,
                message_id,
            )

        dify_documents = [item for item in all_documents if item.provider == "dify"]
        external_documents = [item for item in all_documents if item.provider == "external"]
        document_context_list = []
        retrieval_resource_list = []
        # deal with external documents
        for item in external_documents:
            document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
            source = {
                "dataset_id": item.metadata.get("dataset_id"),
                "dataset_name": item.metadata.get("dataset_name"),
                "document_name": item.metadata.get("title"),
                "data_source_type": "external",
                "retriever_from": invoke_from.to_source(),
                "score": item.metadata.get("score"),
                "content": item.page_content,
            }
            retrieval_resource_list.append(source)
        document_score_list = {}
        # deal with dify documents
        if dify_documents:
            for item in dify_documents:
                if item.metadata.get("score"):
                    document_score_list[item.metadata["doc_id"]] = item.metadata["score"]

            index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
            segments = DocumentSegment.query.filter(
                DocumentSegment.dataset_id.in_(dataset_ids),
                DocumentSegment.status == "completed",
                DocumentSegment.enabled == True,
                DocumentSegment.index_node_id.in_(index_node_ids),
            ).all()

            if segments:
                index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
                sorted_segments = sorted(
                    segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
                )
                for segment in sorted_segments:
                    if segment.answer:
                        document_context_list.append(
                            DocumentContext(
                                content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
                                score=document_score_list.get(segment.index_node_id, None),
                            )
                        )
                    else:
                        document_context_list.append(
                            DocumentContext(
                                content=segment.get_sign_content(),
                                score=document_score_list.get(segment.index_node_id, None),
                            )
                        )
                if show_retrieve_source:
                    for segment in sorted_segments:
                        dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
                        document = DatasetDocument.query.filter(
                            DatasetDocument.id == segment.document_id,
                            DatasetDocument.enabled == True,
                            DatasetDocument.archived == False,
                        ).first()
                        if dataset and document:
                            source = {
                                "dataset_id": dataset.id,
                                "dataset_name": dataset.name,
                                "document_id": document.id,
                                "document_name": document.name,
                                "data_source_type": document.data_source_type,
                                "segment_id": segment.id,
                                "retriever_from": invoke_from.to_source(),
                                "score": document_score_list.get(segment.index_node_id, 0.0),
                            }

                            if invoke_from.to_source() == "dev":
                                source["hit_count"] = segment.hit_count
                                source["word_count"] = segment.word_count
                                source["segment_position"] = segment.position
                                source["index_node_hash"] = segment.index_node_hash
                            if segment.answer:
                                source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
                            else:
                                source["content"] = segment.content
                            retrieval_resource_list.append(source)
        if hit_callback and retrieval_resource_list:
            retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
            for position, item in enumerate(retrieval_resource_list, start=1):
                item["position"] = position
            hit_callback.return_retriever_resource_info(retrieval_resource_list)
        if document_context_list:
            document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
            return str("\n".join([document_context.content for document_context in document_context_list]))
        return ""

    def single_retrieve(
        self,
        app_id: str,
        tenant_id: str,
        user_id: str,
        user_from: str,
        available_datasets: list,
        query: str,
        model_instance: ModelInstance,
        model_config: ModelConfigWithCredentialsEntity,
        planning_strategy: PlanningStrategy,
        message_id: Optional[str] = None,
    ):
        tools = []
        for dataset in available_datasets:
            description = dataset.description
            if not description:
                description = "useful for when you want to answer queries about the " + dataset.name

            description = description.replace("\n", "").replace("\r", "")
            message_tool = PromptMessageTool(
                name=dataset.id,
                description=description,
                parameters={
                    "type": "object",
                    "properties": {},
                    "required": [],
                },
            )
            tools.append(message_tool)
        dataset_id = None
        if planning_strategy == PlanningStrategy.REACT_ROUTER:
            react_multi_dataset_router = ReactMultiDatasetRouter()
            dataset_id = react_multi_dataset_router.invoke(
                query, tools, model_config, model_instance, user_id, tenant_id
            )

        elif planning_strategy == PlanningStrategy.ROUTER:
            function_call_router = FunctionCallMultiDatasetRouter()
            dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)

        if dataset_id:
            # get retrieval model config
            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
            if dataset:
                results = []
                if dataset.provider == "external":
                    external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
                        tenant_id=dataset.tenant_id,
                        dataset_id=dataset_id,
                        query=query,
                        external_retrieval_parameters=dataset.retrieval_model,
                    )
                    for external_document in external_documents:
                        document = Document(
                            page_content=external_document.get("content"),
                            metadata=external_document.get("metadata"),
                            provider="external",
                        )
                        document.metadata["score"] = external_document.get("score")
                        document.metadata["title"] = external_document.get("title")
                        document.metadata["dataset_id"] = dataset_id
                        document.metadata["dataset_name"] = dataset.name
                        results.append(document)
                else:
                    retrieval_model_config = dataset.retrieval_model or default_retrieval_model

                    # get top k
                    top_k = retrieval_model_config["top_k"]
                    # get retrieval method
                    if dataset.indexing_technique == "economy":
                        retrieval_method = "keyword_search"
                    else:
                        retrieval_method = retrieval_model_config["search_method"]
                    # get reranking model
                    reranking_model = (
                        retrieval_model_config["reranking_model"]
                        if retrieval_model_config["reranking_enable"]
                        else None
                    )
                    # get score threshold
                    score_threshold = 0.0
                    score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
                    if score_threshold_enabled:
                        score_threshold = retrieval_model_config.get("score_threshold")

                    with measure_time() as timer:
                        results = RetrievalService.retrieve(
                            retrieval_method=retrieval_method,
                            dataset_id=dataset.id,
                            query=query,
                            top_k=top_k,
                            score_threshold=score_threshold,
                            reranking_model=reranking_model,
                            reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
                            weights=retrieval_model_config.get("weights", None),
                        )
                self._on_query(query, [dataset_id], app_id, user_from, user_id)

                if results:
                    self._on_retrieval_end(results, message_id, timer)

                return results
        return []

    def multiple_retrieve(
        self,
        app_id: str,
        tenant_id: str,
        user_id: str,
        user_from: str,
        available_datasets: list,
        query: str,
        top_k: int,
        score_threshold: float,
        reranking_mode: str,
        reranking_model: Optional[dict] = None,
        weights: Optional[dict] = None,
        reranking_enable: bool = True,
        message_id: Optional[str] = None,
    ):
        if not available_datasets:
            return []
        threads = []
        all_documents = []
        dataset_ids = [dataset.id for dataset in available_datasets]
        index_type_check = all(
            item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
        )
        if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
            raise ValueError(
                "The configured knowledge base list have different indexing technique, please set reranking model."
            )
        index_type = available_datasets[0].indexing_technique
        if index_type == "high_quality":
            embedding_model_check = all(
                item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
            )
            embedding_model_provider_check = all(
                item.embedding_model_provider == available_datasets[0].embedding_model_provider
                for item in available_datasets
            )
            if (
                reranking_enable
                and reranking_mode == "weighted_score"
                and (not embedding_model_check or not embedding_model_provider_check)
            ):
                raise ValueError(
                    "The configured knowledge base list have different embedding model, please set reranking model."
                )
            if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
                weights["vector_setting"]["embedding_provider_name"] = available_datasets[0].embedding_model_provider
                weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model

        for dataset in available_datasets:
            index_type = dataset.indexing_technique
            retrieval_thread = threading.Thread(
                target=self._retriever,
                kwargs={
                    "flask_app": current_app._get_current_object(),
                    "dataset_id": dataset.id,
                    "query": query,
                    "top_k": top_k,
                    "all_documents": all_documents,
                },
            )
            threads.append(retrieval_thread)
            retrieval_thread.start()
        for thread in threads:
            thread.join()

        with measure_time() as timer:
            if reranking_enable:
                # do rerank for searched documents
                data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)

                all_documents = data_post_processor.invoke(
                    query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
                )
            else:
                if index_type == "economy":
                    all_documents = self.calculate_keyword_score(query, all_documents, top_k)
                elif index_type == "high_quality":
                    all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)

        self._on_query(query, dataset_ids, app_id, user_from, user_id)

        if all_documents:
            self._on_retrieval_end(all_documents, message_id, timer)

        return all_documents

    def _on_retrieval_end(
        self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
    ) -> None:
        """Handle retrieval end."""
        dify_documents = [document for document in documents if document.provider == "dify"]
        for document in dify_documents:
            query = db.session.query(DocumentSegment).filter(
                DocumentSegment.index_node_id == document.metadata["doc_id"]
            )

            # if 'dataset_id' in document.metadata:
            if "dataset_id" in document.metadata:
                query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])

            # add hit count to document segment
            query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)

            db.session.commit()

        # get tracing instance
        trace_manager: TraceQueueManager = (
            self.application_generate_entity.trace_manager if self.application_generate_entity else None
        )
        if trace_manager:
            trace_manager.add_trace_task(
                TraceTask(
                    TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
                )
            )

    def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
        """
        Handle query.
        """
        if not query:
            return
        dataset_queries = []
        for dataset_id in dataset_ids:
            dataset_query = DatasetQuery(
                dataset_id=dataset_id,
                content=query,
                source="app",
                source_app_id=app_id,
                created_by_role=user_from,
                created_by=user_id,
            )
            dataset_queries.append(dataset_query)
        if dataset_queries:
            db.session.add_all(dataset_queries)
        db.session.commit()

    def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
        with flask_app.app_context():
            dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()

            if not dataset:
                return []

            if dataset.provider == "external":
                external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
                    tenant_id=dataset.tenant_id,
                    dataset_id=dataset_id,
                    query=query,
                    external_retrieval_parameters=dataset.retrieval_model,
                )
                for external_document in external_documents:
                    document = Document(
                        page_content=external_document.get("content"),
                        metadata=external_document.get("metadata"),
                        provider="external",
                    )
                    document.metadata["score"] = external_document.get("score")
                    document.metadata["title"] = external_document.get("title")
                    document.metadata["dataset_id"] = dataset_id
                    document.metadata["dataset_name"] = dataset.name
                    all_documents.append(document)
            else:
                # get retrieval model , if the model is not setting , using default
                retrieval_model = dataset.retrieval_model or default_retrieval_model

                if dataset.indexing_technique == "economy":
                    # use keyword table query
                    documents = RetrievalService.retrieve(
                        retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
                    )
                    if documents:
                        all_documents.extend(documents)
                else:
                    if top_k > 0:
                        # retrieval source
                        documents = RetrievalService.retrieve(
                            retrieval_method=retrieval_model["search_method"],
                            dataset_id=dataset.id,
                            query=query,
                            top_k=retrieval_model.get("top_k") or 2,
                            score_threshold=retrieval_model.get("score_threshold", 0.0)
                            if retrieval_model["score_threshold_enabled"]
                            else 0.0,
                            reranking_model=retrieval_model.get("reranking_model", None)
                            if retrieval_model["reranking_enable"]
                            else None,
                            reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
                            weights=retrieval_model.get("weights", None),
                        )

                        all_documents.extend(documents)

    def to_dataset_retriever_tool(
        self,
        tenant_id: str,
        dataset_ids: list[str],
        retrieve_config: DatasetRetrieveConfigEntity,
        return_resource: bool,
        invoke_from: InvokeFrom,
        hit_callback: DatasetIndexToolCallbackHandler,
    ) -> Optional[list[DatasetRetrieverBaseTool]]:
        """
        A dataset tool is a tool that can be used to retrieve information from a dataset
        :param tenant_id: tenant id
        :param dataset_ids: dataset ids
        :param retrieve_config: retrieve config
        :param return_resource: return resource
        :param invoke_from: invoke from
        :param hit_callback: hit callback
        """
        tools = []
        available_datasets = []
        for dataset_id in dataset_ids:
            # get dataset from dataset id
            dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()

            # pass if dataset is not available
            if not dataset:
                continue

            # pass if dataset is not available
            if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
                continue

            available_datasets.append(dataset)

        if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
            # get retrieval model config
            default_retrieval_model = {
                "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
                "reranking_enable": False,
                "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
                "top_k": 2,
                "score_threshold_enabled": False,
            }

            for dataset in available_datasets:
                retrieval_model_config = dataset.retrieval_model or default_retrieval_model

                # get top k
                top_k = retrieval_model_config["top_k"]

                # get score threshold
                score_threshold = None
                score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
                if score_threshold_enabled:
                    score_threshold = retrieval_model_config.get("score_threshold")

                tool = DatasetRetrieverTool.from_dataset(
                    dataset=dataset,
                    top_k=top_k,
                    score_threshold=score_threshold,
                    hit_callbacks=[hit_callback],
                    return_resource=return_resource,
                    retriever_from=invoke_from.to_source(),
                )

                tools.append(tool)
        elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
            tool = DatasetMultiRetrieverTool.from_dataset(
                dataset_ids=[dataset.id for dataset in available_datasets],
                tenant_id=tenant_id,
                top_k=retrieve_config.top_k or 2,
                score_threshold=retrieve_config.score_threshold,
                hit_callbacks=[hit_callback],
                return_resource=return_resource,
                retriever_from=invoke_from.to_source(),
                reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
                reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
            )

            tools.append(tool)

        return tools

    def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
        """
        Calculate keywords scores
        :param query: search query
        :param documents: documents for reranking

        :return:
        """
        keyword_table_handler = JiebaKeywordTableHandler()
        query_keywords = keyword_table_handler.extract_keywords(query, None)
        documents_keywords = []
        for document in documents:
            # get the document keywords
            document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
            document.metadata["keywords"] = document_keywords
            documents_keywords.append(document_keywords)

        # Counter query keywords(TF)
        query_keyword_counts = Counter(query_keywords)

        # total documents
        total_documents = len(documents)

        # calculate all documents' keywords IDF
        all_keywords = set()
        for document_keywords in documents_keywords:
            all_keywords.update(document_keywords)

        keyword_idf = {}
        for keyword in all_keywords:
            # calculate include query keywords' documents
            doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
            # IDF
            keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1

        query_tfidf = {}

        for keyword, count in query_keyword_counts.items():
            tf = count
            idf = keyword_idf.get(keyword, 0)
            query_tfidf[keyword] = tf * idf

        # calculate all documents' TF-IDF
        documents_tfidf = []
        for document_keywords in documents_keywords:
            document_keyword_counts = Counter(document_keywords)
            document_tfidf = {}
            for keyword, count in document_keyword_counts.items():
                tf = count
                idf = keyword_idf.get(keyword, 0)
                document_tfidf[keyword] = tf * idf
            documents_tfidf.append(document_tfidf)

        def cosine_similarity(vec1, vec2):
            intersection = set(vec1.keys()) & set(vec2.keys())
            numerator = sum(vec1[x] * vec2[x] for x in intersection)

            sum1 = sum(vec1[x] ** 2 for x in vec1)
            sum2 = sum(vec2[x] ** 2 for x in vec2)
            denominator = math.sqrt(sum1) * math.sqrt(sum2)

            if not denominator:
                return 0.0
            else:
                return float(numerator) / denominator

        similarities = []
        for document_tfidf in documents_tfidf:
            similarity = cosine_similarity(query_tfidf, document_tfidf)
            similarities.append(similarity)

        for document, score in zip(documents, similarities):
            # format document
            document.metadata["score"] = score
        documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True)
        return documents[:top_k] if top_k else documents

    def calculate_vector_score(
        self, all_documents: list[Document], top_k: int, score_threshold: float
    ) -> list[Document]:
        filter_documents = []
        for document in all_documents:
            if score_threshold is None or document.metadata["score"] >= score_threshold:
                filter_documents.append(document)

        if not filter_documents:
            return []
        filter_documents = sorted(filter_documents, key=lambda x: x.metadata["score"], reverse=True)
        return filter_documents[:top_k] if top_k else filter_documents