File size: 32,145 Bytes
a8b3f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
import math
import threading
from collections import Counter
from typing import Optional, cast
from flask import Flask, current_app
from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
from core.entities.agent_entities import PlanningStrategy
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.message_entities import PromptMessageTool
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from core.rag.data_post_processor.data_post_processor import DataPostProcessor
from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.entities.context_entities import DocumentContext
from core.rag.models.document import Document
from core.rag.rerank.rerank_type import RerankMode
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
from extensions.ext_database import db
from models.dataset import Dataset, DatasetQuery, DocumentSegment
from models.dataset import Document as DatasetDocument
from services.external_knowledge_service import ExternalDatasetService
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
class DatasetRetrieval:
def __init__(self, application_generate_entity=None):
self.application_generate_entity = application_generate_entity
def retrieve(
self,
app_id: str,
user_id: str,
tenant_id: str,
model_config: ModelConfigWithCredentialsEntity,
config: DatasetEntity,
query: str,
invoke_from: InvokeFrom,
show_retrieve_source: bool,
hit_callback: DatasetIndexToolCallbackHandler,
message_id: str,
memory: Optional[TokenBufferMemory] = None,
) -> Optional[str]:
"""
Retrieve dataset.
:param app_id: app_id
:param user_id: user_id
:param tenant_id: tenant id
:param model_config: model config
:param config: dataset config
:param query: query
:param invoke_from: invoke from
:param show_retrieve_source: show retrieve source
:param hit_callback: hit callback
:param message_id: message id
:param memory: memory
:return:
"""
dataset_ids = config.dataset_ids
if len(dataset_ids) == 0:
return None
retrieve_config = config.retrieve_config
# check model is support tool calling
model_type_instance = model_config.provider_model_bundle.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
)
# get model schema
model_schema = model_type_instance.get_model_schema(
model=model_config.model, credentials=model_config.credentials
)
if not model_schema:
return None
planning_strategy = PlanningStrategy.REACT_ROUTER
features = model_schema.features
if features:
if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
planning_strategy = PlanningStrategy.ROUTER
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
continue
available_datasets.append(dataset)
all_documents = []
user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
all_documents = self.single_retrieve(
app_id,
tenant_id,
user_id,
user_from,
available_datasets,
query,
model_instance,
model_config,
planning_strategy,
message_id,
)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
all_documents = self.multiple_retrieve(
app_id,
tenant_id,
user_id,
user_from,
available_datasets,
query,
retrieve_config.top_k,
retrieve_config.score_threshold,
retrieve_config.rerank_mode,
retrieve_config.reranking_model,
retrieve_config.weights,
retrieve_config.reranking_enabled,
message_id,
)
dify_documents = [item for item in all_documents if item.provider == "dify"]
external_documents = [item for item in all_documents if item.provider == "external"]
document_context_list = []
retrieval_resource_list = []
# deal with external documents
for item in external_documents:
document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
source = {
"dataset_id": item.metadata.get("dataset_id"),
"dataset_name": item.metadata.get("dataset_name"),
"document_name": item.metadata.get("title"),
"data_source_type": "external",
"retriever_from": invoke_from.to_source(),
"score": item.metadata.get("score"),
"content": item.page_content,
}
retrieval_resource_list.append(source)
document_score_list = {}
# deal with dify documents
if dify_documents:
for item in dify_documents:
if item.metadata.get("score"):
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
segments = DocumentSegment.query.filter(
DocumentSegment.dataset_id.in_(dataset_ids),
DocumentSegment.status == "completed",
DocumentSegment.enabled == True,
DocumentSegment.index_node_id.in_(index_node_ids),
).all()
if segments:
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
sorted_segments = sorted(
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
)
for segment in sorted_segments:
if segment.answer:
document_context_list.append(
DocumentContext(
content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
score=document_score_list.get(segment.index_node_id, None),
)
)
else:
document_context_list.append(
DocumentContext(
content=segment.get_sign_content(),
score=document_score_list.get(segment.index_node_id, None),
)
)
if show_retrieve_source:
for segment in sorted_segments:
dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
document = DatasetDocument.query.filter(
DatasetDocument.id == segment.document_id,
DatasetDocument.enabled == True,
DatasetDocument.archived == False,
).first()
if dataset and document:
source = {
"dataset_id": dataset.id,
"dataset_name": dataset.name,
"document_id": document.id,
"document_name": document.name,
"data_source_type": document.data_source_type,
"segment_id": segment.id,
"retriever_from": invoke_from.to_source(),
"score": document_score_list.get(segment.index_node_id, 0.0),
}
if invoke_from.to_source() == "dev":
source["hit_count"] = segment.hit_count
source["word_count"] = segment.word_count
source["segment_position"] = segment.position
source["index_node_hash"] = segment.index_node_hash
if segment.answer:
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
else:
source["content"] = segment.content
retrieval_resource_list.append(source)
if hit_callback and retrieval_resource_list:
retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
for position, item in enumerate(retrieval_resource_list, start=1):
item["position"] = position
hit_callback.return_retriever_resource_info(retrieval_resource_list)
if document_context_list:
document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
return str("\n".join([document_context.content for document_context in document_context_list]))
return ""
def single_retrieve(
self,
app_id: str,
tenant_id: str,
user_id: str,
user_from: str,
available_datasets: list,
query: str,
model_instance: ModelInstance,
model_config: ModelConfigWithCredentialsEntity,
planning_strategy: PlanningStrategy,
message_id: Optional[str] = None,
):
tools = []
for dataset in available_datasets:
description = dataset.description
if not description:
description = "useful for when you want to answer queries about the " + dataset.name
description = description.replace("\n", "").replace("\r", "")
message_tool = PromptMessageTool(
name=dataset.id,
description=description,
parameters={
"type": "object",
"properties": {},
"required": [],
},
)
tools.append(message_tool)
dataset_id = None
if planning_strategy == PlanningStrategy.REACT_ROUTER:
react_multi_dataset_router = ReactMultiDatasetRouter()
dataset_id = react_multi_dataset_router.invoke(
query, tools, model_config, model_instance, user_id, tenant_id
)
elif planning_strategy == PlanningStrategy.ROUTER:
function_call_router = FunctionCallMultiDatasetRouter()
dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
if dataset_id:
# get retrieval model config
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if dataset:
results = []
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
external_retrieval_parameters=dataset.retrieval_model,
)
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
results.append(document)
else:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get retrieval method
if dataset.indexing_technique == "economy":
retrieval_method = "keyword_search"
else:
retrieval_method = retrieval_model_config["search_method"]
# get reranking model
reranking_model = (
retrieval_model_config["reranking_model"]
if retrieval_model_config["reranking_enable"]
else None
)
# get score threshold
score_threshold = 0.0
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
with measure_time() as timer:
results = RetrievalService.retrieve(
retrieval_method=retrieval_method,
dataset_id=dataset.id,
query=query,
top_k=top_k,
score_threshold=score_threshold,
reranking_model=reranking_model,
reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
weights=retrieval_model_config.get("weights", None),
)
self._on_query(query, [dataset_id], app_id, user_from, user_id)
if results:
self._on_retrieval_end(results, message_id, timer)
return results
return []
def multiple_retrieve(
self,
app_id: str,
tenant_id: str,
user_id: str,
user_from: str,
available_datasets: list,
query: str,
top_k: int,
score_threshold: float,
reranking_mode: str,
reranking_model: Optional[dict] = None,
weights: Optional[dict] = None,
reranking_enable: bool = True,
message_id: Optional[str] = None,
):
if not available_datasets:
return []
threads = []
all_documents = []
dataset_ids = [dataset.id for dataset in available_datasets]
index_type_check = all(
item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
)
if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
raise ValueError(
"The configured knowledge base list have different indexing technique, please set reranking model."
)
index_type = available_datasets[0].indexing_technique
if index_type == "high_quality":
embedding_model_check = all(
item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
)
embedding_model_provider_check = all(
item.embedding_model_provider == available_datasets[0].embedding_model_provider
for item in available_datasets
)
if (
reranking_enable
and reranking_mode == "weighted_score"
and (not embedding_model_check or not embedding_model_provider_check)
):
raise ValueError(
"The configured knowledge base list have different embedding model, please set reranking model."
)
if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
weights["vector_setting"]["embedding_provider_name"] = available_datasets[0].embedding_model_provider
weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
for dataset in available_datasets:
index_type = dataset.indexing_technique
retrieval_thread = threading.Thread(
target=self._retriever,
kwargs={
"flask_app": current_app._get_current_object(),
"dataset_id": dataset.id,
"query": query,
"top_k": top_k,
"all_documents": all_documents,
},
)
threads.append(retrieval_thread)
retrieval_thread.start()
for thread in threads:
thread.join()
with measure_time() as timer:
if reranking_enable:
# do rerank for searched documents
data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
all_documents = data_post_processor.invoke(
query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
)
else:
if index_type == "economy":
all_documents = self.calculate_keyword_score(query, all_documents, top_k)
elif index_type == "high_quality":
all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
self._on_query(query, dataset_ids, app_id, user_from, user_id)
if all_documents:
self._on_retrieval_end(all_documents, message_id, timer)
return all_documents
def _on_retrieval_end(
self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
) -> None:
"""Handle retrieval end."""
dify_documents = [document for document in documents if document.provider == "dify"]
for document in dify_documents:
query = db.session.query(DocumentSegment).filter(
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
# if 'dataset_id' in document.metadata:
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
# add hit count to document segment
query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
db.session.commit()
# get tracing instance
trace_manager: TraceQueueManager = (
self.application_generate_entity.trace_manager if self.application_generate_entity else None
)
if trace_manager:
trace_manager.add_trace_task(
TraceTask(
TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
)
)
def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
"""
Handle query.
"""
if not query:
return
dataset_queries = []
for dataset_id in dataset_ids:
dataset_query = DatasetQuery(
dataset_id=dataset_id,
content=query,
source="app",
source_app_id=app_id,
created_by_role=user_from,
created_by=user_id,
)
dataset_queries.append(dataset_query)
if dataset_queries:
db.session.add_all(dataset_queries)
db.session.commit()
def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
with flask_app.app_context():
dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
if not dataset:
return []
if dataset.provider == "external":
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
tenant_id=dataset.tenant_id,
dataset_id=dataset_id,
query=query,
external_retrieval_parameters=dataset.retrieval_model,
)
for external_document in external_documents:
document = Document(
page_content=external_document.get("content"),
metadata=external_document.get("metadata"),
provider="external",
)
document.metadata["score"] = external_document.get("score")
document.metadata["title"] = external_document.get("title")
document.metadata["dataset_id"] = dataset_id
document.metadata["dataset_name"] = dataset.name
all_documents.append(document)
else:
# get retrieval model , if the model is not setting , using default
retrieval_model = dataset.retrieval_model or default_retrieval_model
if dataset.indexing_technique == "economy":
# use keyword table query
documents = RetrievalService.retrieve(
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
)
if documents:
all_documents.extend(documents)
else:
if top_k > 0:
# retrieval source
documents = RetrievalService.retrieve(
retrieval_method=retrieval_model["search_method"],
dataset_id=dataset.id,
query=query,
top_k=retrieval_model.get("top_k") or 2,
score_threshold=retrieval_model.get("score_threshold", 0.0)
if retrieval_model["score_threshold_enabled"]
else 0.0,
reranking_model=retrieval_model.get("reranking_model", None)
if retrieval_model["reranking_enable"]
else None,
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
weights=retrieval_model.get("weights", None),
)
all_documents.extend(documents)
def to_dataset_retriever_tool(
self,
tenant_id: str,
dataset_ids: list[str],
retrieve_config: DatasetRetrieveConfigEntity,
return_resource: bool,
invoke_from: InvokeFrom,
hit_callback: DatasetIndexToolCallbackHandler,
) -> Optional[list[DatasetRetrieverBaseTool]]:
"""
A dataset tool is a tool that can be used to retrieve information from a dataset
:param tenant_id: tenant id
:param dataset_ids: dataset ids
:param retrieve_config: retrieve config
:param return_resource: return resource
:param invoke_from: invoke from
:param hit_callback: hit callback
"""
tools = []
available_datasets = []
for dataset_id in dataset_ids:
# get dataset from dataset id
dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
# pass if dataset is not available
if not dataset:
continue
# pass if dataset is not available
if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
continue
available_datasets.append(dataset)
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
# get retrieval model config
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
for dataset in available_datasets:
retrieval_model_config = dataset.retrieval_model or default_retrieval_model
# get top k
top_k = retrieval_model_config["top_k"]
# get score threshold
score_threshold = None
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
if score_threshold_enabled:
score_threshold = retrieval_model_config.get("score_threshold")
tool = DatasetRetrieverTool.from_dataset(
dataset=dataset,
top_k=top_k,
score_threshold=score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
)
tools.append(tool)
elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
tool = DatasetMultiRetrieverTool.from_dataset(
dataset_ids=[dataset.id for dataset in available_datasets],
tenant_id=tenant_id,
top_k=retrieve_config.top_k or 2,
score_threshold=retrieve_config.score_threshold,
hit_callbacks=[hit_callback],
return_resource=return_resource,
retriever_from=invoke_from.to_source(),
reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
)
tools.append(tool)
return tools
def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
"""
Calculate keywords scores
:param query: search query
:param documents: documents for reranking
:return:
"""
keyword_table_handler = JiebaKeywordTableHandler()
query_keywords = keyword_table_handler.extract_keywords(query, None)
documents_keywords = []
for document in documents:
# get the document keywords
document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
document.metadata["keywords"] = document_keywords
documents_keywords.append(document_keywords)
# Counter query keywords(TF)
query_keyword_counts = Counter(query_keywords)
# total documents
total_documents = len(documents)
# calculate all documents' keywords IDF
all_keywords = set()
for document_keywords in documents_keywords:
all_keywords.update(document_keywords)
keyword_idf = {}
for keyword in all_keywords:
# calculate include query keywords' documents
doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
# IDF
keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
query_tfidf = {}
for keyword, count in query_keyword_counts.items():
tf = count
idf = keyword_idf.get(keyword, 0)
query_tfidf[keyword] = tf * idf
# calculate all documents' TF-IDF
documents_tfidf = []
for document_keywords in documents_keywords:
document_keyword_counts = Counter(document_keywords)
document_tfidf = {}
for keyword, count in document_keyword_counts.items():
tf = count
idf = keyword_idf.get(keyword, 0)
document_tfidf[keyword] = tf * idf
documents_tfidf.append(document_tfidf)
def cosine_similarity(vec1, vec2):
intersection = set(vec1.keys()) & set(vec2.keys())
numerator = sum(vec1[x] * vec2[x] for x in intersection)
sum1 = sum(vec1[x] ** 2 for x in vec1)
sum2 = sum(vec2[x] ** 2 for x in vec2)
denominator = math.sqrt(sum1) * math.sqrt(sum2)
if not denominator:
return 0.0
else:
return float(numerator) / denominator
similarities = []
for document_tfidf in documents_tfidf:
similarity = cosine_similarity(query_tfidf, document_tfidf)
similarities.append(similarity)
for document, score in zip(documents, similarities):
# format document
document.metadata["score"] = score
documents = sorted(documents, key=lambda x: x.metadata["score"], reverse=True)
return documents[:top_k] if top_k else documents
def calculate_vector_score(
self, all_documents: list[Document], top_k: int, score_threshold: float
) -> list[Document]:
filter_documents = []
for document in all_documents:
if score_threshold is None or document.metadata["score"] >= score_threshold:
filter_documents.append(document)
if not filter_documents:
return []
filter_documents = sorted(filter_documents, key=lambda x: x.metadata["score"], reverse=True)
return filter_documents[:top_k] if top_k else filter_documents
|