Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from networks.layers.basic import DropOutLogit, ScaleOffset, DWConv2d | |
def multiply_by_ychunks(x, y, chunks=1): | |
if chunks <= 1: | |
return x @ y | |
else: | |
return torch.cat([x @ _y for _y in y.chunk(chunks, dim=-1)], dim=-1) | |
def multiply_by_xchunks(x, y, chunks=1): | |
if chunks <= 1: | |
return x @ y | |
else: | |
return torch.cat([_x @ y for _x in x.chunk(chunks, dim=-2)], dim=-2) | |
# Long-term attention | |
class MultiheadAttention(nn.Module): | |
def __init__(self, | |
d_model, | |
num_head=8, | |
dropout=0., | |
use_linear=True, | |
d_att=None, | |
use_dis=False, | |
qk_chunks=1, | |
max_mem_len_ratio=-1, | |
top_k=-1): | |
super().__init__() | |
self.d_model = d_model | |
self.num_head = num_head | |
self.use_dis = use_dis | |
self.qk_chunks = qk_chunks | |
self.max_mem_len_ratio = float(max_mem_len_ratio) | |
self.top_k = top_k | |
self.hidden_dim = d_model // num_head | |
self.d_att = self.hidden_dim if d_att is None else d_att | |
self.T = self.d_att**0.5 | |
self.use_linear = use_linear | |
if use_linear: | |
self.linear_Q = nn.Linear(d_model, d_model) | |
self.linear_K = nn.Linear(d_model, d_model) | |
self.linear_V = nn.Linear(d_model, d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.drop_prob = dropout | |
self.projection = nn.Linear(d_model, d_model) | |
self._init_weight() | |
def forward(self, Q, K, V): | |
""" | |
:param Q: A 3d tensor with shape of [T_q, bs, C_q] | |
:param K: A 3d tensor with shape of [T_k, bs, C_k] | |
:param V: A 3d tensor with shape of [T_v, bs, C_v] | |
""" | |
num_head = self.num_head | |
hidden_dim = self.hidden_dim | |
bs = Q.size()[1] | |
# Linear projections | |
if self.use_linear: | |
Q = self.linear_Q(Q) | |
K = self.linear_K(K) | |
V = self.linear_V(V) | |
# Scale | |
Q = Q / self.T | |
if not self.training and self.max_mem_len_ratio > 0: | |
mem_len_ratio = float(K.size(0)) / Q.size(0) | |
if mem_len_ratio > self.max_mem_len_ratio: | |
scaling_ratio = math.log(mem_len_ratio) / math.log( | |
self.max_mem_len_ratio) | |
Q = Q * scaling_ratio | |
# Multi-head | |
Q = Q.view(-1, bs, num_head, self.d_att).permute(1, 2, 0, 3) | |
K = K.view(-1, bs, num_head, self.d_att).permute(1, 2, 3, 0) | |
V = V.view(-1, bs, num_head, hidden_dim).permute(1, 2, 0, 3) | |
# Multiplication | |
QK = multiply_by_ychunks(Q, K, self.qk_chunks) | |
if self.use_dis: | |
QK = 2 * QK - K.pow(2).sum(dim=-2, keepdim=True) | |
# Activation | |
if not self.training and self.top_k > 0 and self.top_k < QK.size()[-1]: | |
top_QK, indices = torch.topk(QK, k=self.top_k, dim=-1) | |
top_attn = torch.softmax(top_QK, dim=-1) | |
attn = torch.zeros_like(QK).scatter_(-1, indices, top_attn) | |
else: | |
attn = torch.softmax(QK, dim=-1) | |
# Dropouts | |
attn = self.dropout(attn) | |
# Weighted sum | |
outputs = multiply_by_xchunks(attn, V, | |
self.qk_chunks).permute(2, 0, 1, 3) | |
# Restore shape | |
outputs = outputs.reshape(-1, bs, self.d_model) | |
outputs = self.projection(outputs) | |
return outputs, attn | |
def _init_weight(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
# Short-term attention | |
class MultiheadLocalAttentionV1(nn.Module): | |
def __init__(self, | |
d_model, | |
num_head, | |
dropout=0., | |
max_dis=7, | |
dilation=1, | |
use_linear=True, | |
enable_corr=True): | |
super().__init__() | |
self.dilation = dilation | |
self.window_size = 2 * max_dis + 1 | |
self.max_dis = max_dis | |
self.num_head = num_head | |
self.T = ((d_model / num_head)**0.5) | |
self.use_linear = use_linear | |
if use_linear: | |
self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.relative_emb_k = nn.Conv2d(d_model, | |
num_head * self.window_size * | |
self.window_size, | |
kernel_size=1, | |
groups=num_head) | |
self.relative_emb_v = nn.Parameter( | |
torch.zeros([ | |
self.num_head, d_model // self.num_head, | |
self.window_size * self.window_size | |
])) | |
self.enable_corr = enable_corr | |
if enable_corr: | |
from spatial_correlation_sampler import SpatialCorrelationSampler | |
self.correlation_sampler = SpatialCorrelationSampler( | |
kernel_size=1, | |
patch_size=self.window_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
dilation_patch=self.dilation) | |
self.projection = nn.Linear(d_model, d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.drop_prob = dropout | |
def forward(self, q, k, v): | |
n, c, h, w = v.size() | |
if self.use_linear: | |
q = self.linear_Q(q) | |
k = self.linear_K(k) | |
v = self.linear_V(v) | |
hidden_dim = c // self.num_head | |
relative_emb = self.relative_emb_k(q) | |
memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
# Scale | |
q = q / self.T | |
q = q.view(-1, hidden_dim, h, w) | |
k = k.reshape(-1, hidden_dim, h, w).contiguous() | |
unfolded_vu = self.pad_and_unfold(v).view( | |
n, self.num_head, hidden_dim, self.window_size * self.window_size, | |
h * w) + self.relative_emb_v.unsqueeze(0).unsqueeze(-1) | |
relative_emb = relative_emb.view(n, self.num_head, | |
self.window_size * self.window_size, | |
h * w) | |
unfolded_k_mask = self.pad_and_unfold(memory_mask).bool().view( | |
1, 1, self.window_size * self.window_size, | |
h * w).expand(n, self.num_head, -1, -1) | |
if self.enable_corr: | |
qk = self.correlation_sampler(q, k).view( | |
n, self.num_head, self.window_size * self.window_size, | |
h * w) + relative_emb | |
else: | |
unfolded_k = self.pad_and_unfold(k).view( | |
n * self.num_head, hidden_dim, | |
self.window_size * self.window_size, h, w) | |
qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
n, self.num_head, self.window_size * self.window_size, | |
h * w) + relative_emb | |
qk_mask = 1 - unfolded_k_mask | |
qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
local_attn = torch.softmax(qk, dim=2) | |
local_attn = self.dropout(local_attn) | |
output = (local_attn.unsqueeze(2) * unfolded_vu).sum(dim=3).permute( | |
3, 0, 1, 2).view(h * w, n, c) | |
output = self.projection(output) | |
return output, local_attn | |
def pad_and_unfold(self, x): | |
pad_pixel = self.max_dis * self.dilation | |
x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
mode='constant', | |
value=0) | |
x = F.unfold(x, | |
kernel_size=(self.window_size, self.window_size), | |
stride=(1, 1), | |
dilation=self.dilation) | |
return x | |
class MultiheadLocalAttentionV2(nn.Module): | |
def __init__(self, | |
d_model, | |
num_head, | |
dropout=0., | |
max_dis=7, | |
dilation=1, | |
use_linear=True, | |
enable_corr=True, | |
d_att=None, | |
use_dis=False): | |
super().__init__() | |
self.dilation = dilation | |
self.window_size = 2 * max_dis + 1 | |
self.max_dis = max_dis | |
self.num_head = num_head | |
self.hidden_dim = d_model // num_head | |
self.d_att = self.hidden_dim if d_att is None else d_att | |
self.T = self.d_att**0.5 | |
self.use_dis = use_dis | |
self.use_linear = use_linear | |
if use_linear: | |
self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.relative_emb_k = nn.Conv2d(self.d_att * self.num_head, | |
num_head * self.window_size * | |
self.window_size, | |
kernel_size=1, | |
groups=num_head) | |
self.relative_emb_v = nn.Parameter( | |
torch.zeros([ | |
self.num_head, d_model // self.num_head, | |
self.window_size * self.window_size | |
])) | |
self.enable_corr = enable_corr | |
if enable_corr: | |
from spatial_correlation_sampler import SpatialCorrelationSampler | |
self.correlation_sampler = SpatialCorrelationSampler( | |
kernel_size=1, | |
patch_size=self.window_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
dilation_patch=self.dilation) | |
self.projection = nn.Linear(d_model, d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.drop_prob = dropout | |
self.local_mask = None | |
self.last_size_2d = None | |
self.qk_mask = None | |
def forward(self, q, k, v): | |
n, c, h, w = v.size() | |
if self.use_linear: | |
q = self.linear_Q(q) | |
k = self.linear_K(k) | |
v = self.linear_V(v) | |
hidden_dim = self.hidden_dim | |
if self.qk_mask is not None and (h, w) == self.last_size_2d: | |
qk_mask = self.qk_mask | |
else: | |
memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
unfolded_k_mask = self.pad_and_unfold(memory_mask).view( | |
1, 1, self.window_size * self.window_size, h * w) | |
qk_mask = 1 - unfolded_k_mask | |
self.qk_mask = qk_mask | |
relative_emb = self.relative_emb_k(q) | |
# Scale | |
q = q / self.T | |
q = q.view(-1, self.d_att, h, w) | |
k = k.view(-1, self.d_att, h, w) | |
v = v.view(-1, self.num_head, hidden_dim, h * w) | |
relative_emb = relative_emb.view(n, self.num_head, | |
self.window_size * self.window_size, | |
h * w) | |
if self.enable_corr: | |
qk = self.correlation_sampler(q, k).view( | |
n, self.num_head, self.window_size * self.window_size, h * w) | |
else: | |
unfolded_k = self.pad_and_unfold(k).view( | |
n * self.num_head, hidden_dim, | |
self.window_size * self.window_size, h, w) | |
qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
n, self.num_head, self.window_size * self.window_size, h * w) | |
if self.use_dis: | |
qk = 2 * qk - self.pad_and_unfold( | |
k.pow(2).sum(dim=1, keepdim=True)).view( | |
n, self.num_head, self.window_size * self.window_size, | |
h * w) | |
qk = qk + relative_emb | |
qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
local_attn = torch.softmax(qk, dim=2) | |
local_attn = self.dropout(local_attn) | |
agg_bias = torch.einsum('bhwn,hcw->bhnc', local_attn, | |
self.relative_emb_v) | |
global_attn = self.local2global(local_attn, h, w) | |
agg_value = (global_attn @ v.transpose(-2, -1)) | |
output = (agg_value + agg_bias).permute(2, 0, 1, | |
3).reshape(h * w, n, c) | |
output = self.projection(output) | |
self.last_size_2d = (h, w) | |
return output, local_attn | |
def local2global(self, local_attn, height, width): | |
batch_size = local_attn.size()[0] | |
pad_height = height + 2 * self.max_dis | |
pad_width = width + 2 * self.max_dis | |
if self.local_mask is not None and (height, | |
width) == self.last_size_2d: | |
local_mask = self.local_mask | |
else: | |
ky, kx = torch.meshgrid([ | |
torch.arange(0, pad_height, device=local_attn.device), | |
torch.arange(0, pad_width, device=local_attn.device) | |
]) | |
qy, qx = torch.meshgrid([ | |
torch.arange(0, height, device=local_attn.device), | |
torch.arange(0, width, device=local_attn.device) | |
]) | |
offset_y = qy.reshape(-1, 1) - ky.reshape(1, -1) + self.max_dis | |
offset_x = qx.reshape(-1, 1) - kx.reshape(1, -1) + self.max_dis | |
local_mask = (offset_y.abs() <= self.max_dis) & (offset_x.abs() <= | |
self.max_dis) | |
local_mask = local_mask.view(1, 1, height * width, pad_height, | |
pad_width) | |
self.local_mask = local_mask | |
global_attn = torch.zeros( | |
(batch_size, self.num_head, height * width, pad_height, pad_width), | |
device=local_attn.device) | |
global_attn[local_mask.expand(batch_size, self.num_head, | |
-1, -1, -1)] = local_attn.transpose( | |
-1, -2).reshape(-1) | |
global_attn = global_attn[:, :, :, self.max_dis:-self.max_dis, | |
self.max_dis:-self.max_dis].reshape( | |
batch_size, self.num_head, | |
height * width, height * width) | |
return global_attn | |
def pad_and_unfold(self, x): | |
pad_pixel = self.max_dis * self.dilation | |
x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
mode='constant', | |
value=0) | |
x = F.unfold(x, | |
kernel_size=(self.window_size, self.window_size), | |
stride=(1, 1), | |
dilation=self.dilation) | |
return x | |
class MultiheadLocalAttentionV3(nn.Module): | |
def __init__(self, | |
d_model, | |
num_head, | |
dropout=0., | |
max_dis=7, | |
dilation=1, | |
use_linear=True): | |
super().__init__() | |
self.dilation = dilation | |
self.window_size = 2 * max_dis + 1 | |
self.max_dis = max_dis | |
self.num_head = num_head | |
self.T = ((d_model / num_head)**0.5) | |
self.use_linear = use_linear | |
if use_linear: | |
self.linear_Q = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_K = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.linear_V = nn.Conv2d(d_model, d_model, kernel_size=1) | |
self.relative_emb_k = nn.Conv2d(d_model, | |
num_head * self.window_size * | |
self.window_size, | |
kernel_size=1, | |
groups=num_head) | |
self.relative_emb_v = nn.Parameter( | |
torch.zeros([ | |
self.num_head, d_model // self.num_head, | |
self.window_size * self.window_size | |
])) | |
self.projection = nn.Linear(d_model, d_model) | |
self.dropout = DropOutLogit(dropout) | |
self.padded_local_mask = None | |
self.local_mask = None | |
self.last_size_2d = None | |
self.qk_mask = None | |
def forward(self, q, k, v): | |
n, c, h, w = q.size() | |
if self.use_linear: | |
q = self.linear_Q(q) | |
k = self.linear_K(k) | |
v = self.linear_V(v) | |
hidden_dim = c // self.num_head | |
relative_emb = self.relative_emb_k(q) | |
relative_emb = relative_emb.view(n, self.num_head, | |
self.window_size * self.window_size, | |
h * w) | |
padded_local_mask, local_mask = self.compute_mask(h, | |
w, | |
device=q.device) | |
qk_mask = (~padded_local_mask).float() | |
# Scale | |
q = q / self.T | |
q = q.view(-1, self.num_head, hidden_dim, h * w) | |
k = k.view(-1, self.num_head, hidden_dim, h * w) | |
v = v.view(-1, self.num_head, hidden_dim, h * w) | |
qk = q.transpose(-1, -2) @ k # [B, nH, kL, qL] | |
pad_pixel = self.max_dis * self.dilation | |
padded_qk = F.pad(qk.view(-1, self.num_head, h * w, h, w), | |
(pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
mode='constant', | |
value=-1e+8 if qk.dtype == torch.float32 else -1e+4) | |
qk_mask = qk_mask * 1e+8 if (padded_qk.dtype | |
== torch.float32) else qk_mask * 1e+4 | |
padded_qk = padded_qk - qk_mask | |
padded_qk[padded_local_mask.expand(n, self.num_head, -1, -1, | |
-1)] += relative_emb.transpose( | |
-1, -2).reshape(-1) | |
padded_qk = self.dropout(padded_qk) | |
local_qk = padded_qk[padded_local_mask.expand(n, self.num_head, -1, -1, | |
-1)] | |
global_qk = padded_qk[:, :, :, self.max_dis:-self.max_dis, | |
self.max_dis:-self.max_dis].reshape( | |
n, self.num_head, h * w, h * w) | |
local_attn = torch.softmax(local_qk.reshape( | |
n, self.num_head, h * w, self.window_size * self.window_size), | |
dim=3) | |
global_attn = torch.softmax(global_qk, dim=3) | |
agg_bias = torch.einsum('bhnw,hcw->nbhc', local_attn, | |
self.relative_emb_v).reshape(h * w, n, c) | |
agg_value = (global_attn @ v.transpose(-2, -1)) | |
output = agg_value + agg_bias | |
output = self.projection(output) | |
self.last_size_2d = (h, w) | |
return output, local_attn | |
def compute_mask(self, height, width, device=None): | |
pad_height = height + 2 * self.max_dis | |
pad_width = width + 2 * self.max_dis | |
if self.padded_local_mask is not None and (height, | |
width) == self.last_size_2d: | |
padded_local_mask = self.padded_local_mask | |
local_mask = self.local_mask | |
else: | |
ky, kx = torch.meshgrid([ | |
torch.arange(0, pad_height, device=device), | |
torch.arange(0, pad_width, device=device) | |
]) | |
qy, qx = torch.meshgrid([ | |
torch.arange(0, height, device=device), | |
torch.arange(0, width, device=device) | |
]) | |
qy = qy.reshape(-1, 1) | |
qx = qx.reshape(-1, 1) | |
offset_y = qy - ky.reshape(1, -1) + self.max_dis | |
offset_x = qx - kx.reshape(1, -1) + self.max_dis | |
padded_local_mask = (offset_y.abs() <= self.max_dis) & ( | |
offset_x.abs() <= self.max_dis) | |
padded_local_mask = padded_local_mask.view(1, 1, height * width, | |
pad_height, pad_width) | |
local_mask = padded_local_mask[:, :, :, self.max_dis:-self.max_dis, | |
self.max_dis:-self.max_dis] | |
pad_pixel = self.max_dis * self.dilation | |
local_mask = F.pad(local_mask.float(), | |
(pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
mode='constant', | |
value=0).view(1, 1, height * width, pad_height, | |
pad_width) | |
self.padded_local_mask = padded_local_mask | |
self.local_mask = local_mask | |
return padded_local_mask, local_mask | |
def linear_gate(x, dim=-1): | |
# return F.relu_(x).pow(2.) / x.size()[dim] | |
return torch.softmax(x, dim=dim) | |
def silu(x): | |
return x * torch.sigmoid(x) | |
class GatedPropagation(nn.Module): | |
def __init__(self, | |
d_qk, | |
d_vu, | |
num_head=8, | |
dropout=0., | |
use_linear=True, | |
d_att=None, | |
use_dis=False, | |
qk_chunks=1, | |
max_mem_len_ratio=-1, | |
top_k=-1, | |
expand_ratio=2.): | |
super().__init__() | |
expand_ratio = expand_ratio | |
self.expand_d_vu = int(d_vu * expand_ratio) | |
self.d_vu = d_vu | |
self.d_qk = d_qk | |
self.num_head = num_head | |
self.use_dis = use_dis | |
self.qk_chunks = qk_chunks | |
self.max_mem_len_ratio = float(max_mem_len_ratio) | |
self.top_k = top_k | |
self.hidden_dim = self.expand_d_vu // num_head | |
self.d_att = d_qk // num_head if d_att is None else d_att | |
self.T = self.d_att**0.5 | |
self.use_linear = use_linear | |
self.d_middle = self.d_att * self.num_head | |
if use_linear: | |
self.linear_QK = nn.Linear(d_qk, self.d_middle) | |
half_d_vu = self.hidden_dim * num_head // 2 | |
self.linear_V1 = nn.Linear(d_vu // 2, half_d_vu) | |
self.linear_V2 = nn.Linear(d_vu // 2, half_d_vu) | |
self.linear_U1 = nn.Linear(d_vu // 2, half_d_vu) | |
self.linear_U2 = nn.Linear(d_vu // 2, half_d_vu) | |
self.dropout = nn.Dropout(dropout) | |
self.drop_prob = dropout | |
self.dw_conv = DWConv2d(self.expand_d_vu) | |
self.projection = nn.Linear(self.expand_d_vu, d_vu) | |
self._init_weight() | |
def forward(self, Q, K, V, U, size_2d): | |
""" | |
:param Q: A 3d tensor with shape of [T_q, bs, C_q] | |
:param K: A 3d tensor with shape of [T_k, bs, C_k] | |
:param V: A 3d tensor with shape of [T_v, bs, C_v] | |
""" | |
num_head = self.num_head | |
hidden_dim = self.hidden_dim | |
l, bs, _ = Q.size() | |
# Linear projections | |
if self.use_linear: | |
Q = K = self.linear_QK(Q) | |
def cat(X1, X2): | |
if num_head > 1: | |
X1 = X1.view(-1, bs, num_head, hidden_dim // 2) | |
X2 = X2.view(-1, bs, num_head, hidden_dim // 2) | |
X = torch.cat([X1, X2], | |
dim=-1).view(-1, bs, num_head * hidden_dim) | |
else: | |
X = torch.cat([X1, X2], dim=-1) | |
return X | |
V1, V2 = torch.split(V, self.d_vu // 2, dim=-1) | |
V1 = self.linear_V1(V1) | |
V2 = self.linear_V2(V2) | |
V = silu(cat(V1, V2)) | |
U1, U2 = torch.split(U, self.d_vu // 2, dim=-1) | |
U1 = self.linear_U1(U1) | |
U2 = self.linear_U2(U2) | |
U = silu(cat(U1, U2)) | |
# Scale | |
Q = Q / self.T | |
if not self.training and self.max_mem_len_ratio > 0: | |
mem_len_ratio = float(K.size(0)) / Q.size(0) | |
if mem_len_ratio > self.max_mem_len_ratio: | |
scaling_ratio = math.log(mem_len_ratio) / math.log( | |
self.max_mem_len_ratio) | |
Q = Q * scaling_ratio | |
# Multi-head | |
Q = Q.view(-1, bs, num_head, self.d_att).permute(1, 2, 0, 3) | |
K = K.view(-1, bs, num_head, self.d_att).permute(1, 2, 3, 0) | |
V = V.view(-1, bs, num_head, hidden_dim).permute(1, 2, 0, 3) | |
# Multiplication | |
QK = multiply_by_ychunks(Q, K, self.qk_chunks) | |
if self.use_dis: | |
QK = 2 * QK - K.pow(2).sum(dim=-2, keepdim=True) | |
# Activation | |
if not self.training and self.top_k > 0 and self.top_k < QK.size()[-1]: | |
top_QK, indices = torch.topk(QK, k=self.top_k, dim=-1) | |
top_attn = linear_gate(top_QK, dim=-1) | |
attn = torch.zeros_like(QK).scatter_(-1, indices, top_attn) | |
else: | |
attn = linear_gate(QK, dim=-1) | |
# Dropouts | |
attn = self.dropout(attn) | |
# Weighted sum | |
outputs = multiply_by_xchunks(attn, V, | |
self.qk_chunks).permute(2, 0, 1, 3) | |
# Restore shape | |
outputs = outputs.reshape(l, bs, -1) * U | |
outputs = self.dw_conv(outputs, size_2d) | |
outputs = self.projection(outputs) | |
return outputs, attn | |
def _init_weight(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
class LocalGatedPropagation(nn.Module): | |
def __init__(self, | |
d_qk, | |
d_vu, | |
num_head, | |
dropout=0., | |
max_dis=7, | |
dilation=1, | |
use_linear=True, | |
enable_corr=True, | |
d_att=None, | |
use_dis=False, | |
expand_ratio=2.): | |
super().__init__() | |
expand_ratio = expand_ratio | |
self.expand_d_vu = int(d_vu * expand_ratio) | |
self.d_qk = d_qk | |
self.d_vu = d_vu | |
self.dilation = dilation | |
self.window_size = 2 * max_dis + 1 | |
self.max_dis = max_dis | |
self.num_head = num_head | |
self.hidden_dim = self.expand_d_vu // num_head | |
self.d_att = d_qk // num_head if d_att is None else d_att | |
self.T = self.d_att**0.5 | |
self.use_dis = use_dis | |
self.d_middle = self.d_att * self.num_head | |
self.use_linear = use_linear | |
if use_linear: | |
self.linear_QK = nn.Conv2d(d_qk, self.d_middle, kernel_size=1) | |
self.linear_V = nn.Conv2d(d_vu, | |
self.expand_d_vu, | |
kernel_size=1, | |
groups=2) | |
self.linear_U = nn.Conv2d(d_vu, | |
self.expand_d_vu, | |
kernel_size=1, | |
groups=2) | |
self.relative_emb_k = nn.Conv2d(self.d_middle, | |
num_head * self.window_size * | |
self.window_size, | |
kernel_size=1, | |
groups=num_head) | |
self.enable_corr = enable_corr | |
if enable_corr: | |
from spatial_correlation_sampler import SpatialCorrelationSampler | |
self.correlation_sampler = SpatialCorrelationSampler( | |
kernel_size=1, | |
patch_size=self.window_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
dilation_patch=self.dilation) | |
self.dw_conv = DWConv2d(self.expand_d_vu) | |
self.projection = nn.Linear(self.expand_d_vu, d_vu) | |
self.dropout = nn.Dropout(dropout) | |
self.drop_prob = dropout | |
self.local_mask = None | |
self.last_size_2d = None | |
self.qk_mask = None | |
def forward(self, q, k, v, u, size_2d): | |
n, c, h, w = v.size() | |
hidden_dim = self.hidden_dim | |
if self.use_linear: | |
q = k = self.linear_QK(q) | |
v = silu(self.linear_V(v)) | |
u = silu(self.linear_U(u)) | |
if self.num_head > 1: | |
v = v.view(-1, 2, self.num_head, hidden_dim // 2, | |
h * w).permute(0, 2, 1, 3, 4).reshape(n, -1, h, w) | |
u = u.view(-1, 2, self.num_head, hidden_dim // 2, | |
h * w).permute(4, 0, 2, 1, 3).reshape(h * w, n, -1) | |
else: | |
u = u.permute(2, 3, 0, 1).reshape(h * w, n, -1) | |
if self.qk_mask is not None and (h, w) == self.last_size_2d: | |
qk_mask = self.qk_mask | |
else: | |
memory_mask = torch.ones((1, 1, h, w), device=v.device).float() | |
unfolded_k_mask = self.pad_and_unfold(memory_mask).view( | |
1, 1, self.window_size * self.window_size, h * w) | |
qk_mask = 1 - unfolded_k_mask | |
self.qk_mask = qk_mask | |
relative_emb = self.relative_emb_k(q) | |
# Scale | |
q = q / self.T | |
q = q.view(-1, self.d_att, h, w) | |
k = k.view(-1, self.d_att, h, w) | |
v = v.view(-1, self.num_head, hidden_dim, h * w) | |
relative_emb = relative_emb.view(n, self.num_head, | |
self.window_size * self.window_size, | |
h * w) | |
if self.enable_corr: | |
qk = self.correlation_sampler(q, k).view( | |
n, self.num_head, self.window_size * self.window_size, h * w) | |
else: | |
unfolded_k = self.pad_and_unfold(k).view( | |
n * self.num_head, self.d_att, | |
self.window_size * self.window_size, h, w) | |
qk = (q.unsqueeze(2) * unfolded_k).sum(dim=1).view( | |
n, self.num_head, self.window_size * self.window_size, h * w) | |
if self.use_dis: | |
qk = 2 * qk - self.pad_and_unfold( | |
k.pow(2).sum(dim=1, keepdim=True)).view( | |
n, self.num_head, self.window_size * self.window_size, | |
h * w) | |
qk = qk + relative_emb | |
qk -= qk_mask * 1e+8 if qk.dtype == torch.float32 else qk_mask * 1e+4 | |
local_attn = linear_gate(qk, dim=2) | |
local_attn = self.dropout(local_attn) | |
global_attn = self.local2global(local_attn, h, w) | |
agg_value = (global_attn @ v.transpose(-2, -1)).permute( | |
2, 0, 1, 3).reshape(h * w, n, -1) | |
output = agg_value * u | |
output = self.dw_conv(output, size_2d) | |
output = self.projection(output) | |
self.last_size_2d = (h, w) | |
return output, local_attn | |
def local2global(self, local_attn, height, width): | |
batch_size = local_attn.size()[0] | |
pad_height = height + 2 * self.max_dis | |
pad_width = width + 2 * self.max_dis | |
if self.local_mask is not None and (height, | |
width) == self.last_size_2d: | |
local_mask = self.local_mask | |
else: | |
ky, kx = torch.meshgrid([ | |
torch.arange(0, pad_height, device=local_attn.device), | |
torch.arange(0, pad_width, device=local_attn.device) | |
]) | |
qy, qx = torch.meshgrid([ | |
torch.arange(0, height, device=local_attn.device), | |
torch.arange(0, width, device=local_attn.device) | |
]) | |
offset_y = qy.reshape(-1, 1) - ky.reshape(1, -1) + self.max_dis | |
offset_x = qx.reshape(-1, 1) - kx.reshape(1, -1) + self.max_dis | |
local_mask = (offset_y.abs() <= self.max_dis) & (offset_x.abs() <= | |
self.max_dis) | |
local_mask = local_mask.view(1, 1, height * width, pad_height, | |
pad_width) | |
self.local_mask = local_mask | |
global_attn = torch.zeros( | |
(batch_size, self.num_head, height * width, pad_height, pad_width), | |
device=local_attn.device) | |
global_attn[local_mask.expand(batch_size, self.num_head, | |
-1, -1, -1)] = local_attn.transpose( | |
-1, -2).reshape(-1) | |
global_attn = global_attn[:, :, :, self.max_dis:-self.max_dis, | |
self.max_dis:-self.max_dis].reshape( | |
batch_size, self.num_head, | |
height * width, height * width) | |
return global_attn | |
def pad_and_unfold(self, x): | |
pad_pixel = self.max_dis * self.dilation | |
x = F.pad(x, (pad_pixel, pad_pixel, pad_pixel, pad_pixel), | |
mode='constant', | |
value=0) | |
x = F.unfold(x, | |
kernel_size=(self.window_size, self.window_size), | |
stride=(1, 1), | |
dilation=self.dilation) | |
return x | |