Spaces:
Runtime error
Runtime error
Zack
commited on
Commit
·
1f82d2d
1
Parent(s):
05bf296
chore: Fix clobbered code
Browse files
app.py
CHANGED
@@ -68,7 +68,11 @@ def clean_data(df):
|
|
68 |
# Check if DataFrame contains the columns to be converted
|
69 |
elif "Date" in df.columns and "Hour" in df.columns and "Hourly_Labor_Hours_Total" in df.columns:
|
70 |
# Convert "Date" and "Hour" columns into datetime format
|
71 |
-
df["timestamp"] = pd.to_datetime(df["Date"] +
|
|
|
|
|
|
|
|
|
72 |
|
73 |
# Keep only necessary columns
|
74 |
df = df[["timestamp", "Hourly_Labor_Hours_Total"]]
|
@@ -81,31 +85,30 @@ def clean_data(df):
|
|
81 |
else:
|
82 |
raise ValueError("Dataframe does not contain necessary columns.")
|
83 |
|
84 |
-
def
|
85 |
-
#
|
86 |
-
|
87 |
-
df["timestamp"] = pd.to_datetime(df["timestamp"])
|
88 |
-
return df
|
89 |
|
90 |
-
#
|
91 |
-
|
92 |
-
# Convert "Date" and "Hour" columns into datetime format
|
93 |
-
df["timestamp"] = pd.to_datetime(df["Date"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
|
94 |
-
|
95 |
-
# Handle the case where hour is 24
|
96 |
-
df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] + pd.DateOffset(days=1)
|
97 |
-
df["timestamp"] = df["timestamp"].dt.floor('h')
|
98 |
|
99 |
-
|
100 |
-
|
101 |
|
102 |
-
|
103 |
-
df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
|
104 |
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
outputs = gr.outputs.Image()
|
111 |
|
|
|
68 |
# Check if DataFrame contains the columns to be converted
|
69 |
elif "Date" in df.columns and "Hour" in df.columns and "Hourly_Labor_Hours_Total" in df.columns:
|
70 |
# Convert "Date" and "Hour" columns into datetime format
|
71 |
+
df["timestamp"] = pd.to_datetime(df["Date"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
|
72 |
+
|
73 |
+
# Handle the case where hour is 24
|
74 |
+
df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] + pd.DateOffset(days=1)
|
75 |
+
df["timestamp"] = df["timestamp"].dt.floor('h')
|
76 |
|
77 |
# Keep only necessary columns
|
78 |
df = df[["timestamp", "Hourly_Labor_Hours_Total"]]
|
|
|
85 |
else:
|
86 |
raise ValueError("Dataframe does not contain necessary columns.")
|
87 |
|
88 |
+
def master(file):
|
89 |
+
# read file
|
90 |
+
data = pd.read_csv(file.name)
|
|
|
|
|
91 |
|
92 |
+
# clean data
|
93 |
+
data = clean_data(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Convert timestamp to datetime after cleaning
|
96 |
+
data['timestamp'] = pd.to_datetime(data['timestamp'])
|
97 |
|
98 |
+
data.set_index("timestamp", inplace=True)
|
|
|
99 |
|
100 |
+
# Check if data has enough records to create sequences
|
101 |
+
if len(data) < TIME_STEPS:
|
102 |
+
return "Not enough data to create sequences. Need at least {} records.".format(TIME_STEPS)
|
103 |
|
104 |
+
df_test_value = normalize_data(data)
|
105 |
+
# plot input test data
|
106 |
+
plot1 = plot_test_data(df_test_value)
|
107 |
+
# predict
|
108 |
+
anomalies = get_anomalies(df_test_value)
|
109 |
+
#plot anomalous data points
|
110 |
+
plot2 = plot_anomalies(df_test_value, data, anomalies)
|
111 |
+
return plot2
|
112 |
|
113 |
outputs = gr.outputs.Image()
|
114 |
|