Zack commited on
Commit
1f82d2d
·
1 Parent(s): 05bf296

chore: Fix clobbered code

Browse files
Files changed (1) hide show
  1. app.py +24 -21
app.py CHANGED
@@ -68,7 +68,11 @@ def clean_data(df):
68
  # Check if DataFrame contains the columns to be converted
69
  elif "Date" in df.columns and "Hour" in df.columns and "Hourly_Labor_Hours_Total" in df.columns:
70
  # Convert "Date" and "Hour" columns into datetime format
71
- df["timestamp"] = pd.to_datetime(df["Date"] + ' ' + df["Hour"].astype(str) + ":00:00")
 
 
 
 
72
 
73
  # Keep only necessary columns
74
  df = df[["timestamp", "Hourly_Labor_Hours_Total"]]
@@ -81,31 +85,30 @@ def clean_data(df):
81
  else:
82
  raise ValueError("Dataframe does not contain necessary columns.")
83
 
84
- def clean_data(df):
85
- # Check if the DataFrame already contains the correct columns
86
- if "timestamp" in df.columns and "value" in df.columns:
87
- df["timestamp"] = pd.to_datetime(df["timestamp"])
88
- return df
89
 
90
- # Check if DataFrame contains the columns to be converted
91
- elif "Date" in df.columns and "Hour" in df.columns and "Hourly_Labor_Hours_Total" in df.columns:
92
- # Convert "Date" and "Hour" columns into datetime format
93
- df["timestamp"] = pd.to_datetime(df["Date"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
94
-
95
- # Handle the case where hour is 24
96
- df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] + pd.DateOffset(days=1)
97
- df["timestamp"] = df["timestamp"].dt.floor('h')
98
 
99
- # Keep only necessary columns
100
- df = df[["timestamp", "Hourly_Labor_Hours_Total"]]
101
 
102
- # Rename column
103
- df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
104
 
105
- return df
 
 
106
 
107
- else:
108
- raise ValueError("Dataframe does not contain necessary columns.")
 
 
 
 
 
 
109
 
110
  outputs = gr.outputs.Image()
111
 
 
68
  # Check if DataFrame contains the columns to be converted
69
  elif "Date" in df.columns and "Hour" in df.columns and "Hourly_Labor_Hours_Total" in df.columns:
70
  # Convert "Date" and "Hour" columns into datetime format
71
+ df["timestamp"] = pd.to_datetime(df["Date"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
72
+
73
+ # Handle the case where hour is 24
74
+ df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] + pd.DateOffset(days=1)
75
+ df["timestamp"] = df["timestamp"].dt.floor('h')
76
 
77
  # Keep only necessary columns
78
  df = df[["timestamp", "Hourly_Labor_Hours_Total"]]
 
85
  else:
86
  raise ValueError("Dataframe does not contain necessary columns.")
87
 
88
+ def master(file):
89
+ # read file
90
+ data = pd.read_csv(file.name)
 
 
91
 
92
+ # clean data
93
+ data = clean_data(data)
 
 
 
 
 
 
94
 
95
+ # Convert timestamp to datetime after cleaning
96
+ data['timestamp'] = pd.to_datetime(data['timestamp'])
97
 
98
+ data.set_index("timestamp", inplace=True)
 
99
 
100
+ # Check if data has enough records to create sequences
101
+ if len(data) < TIME_STEPS:
102
+ return "Not enough data to create sequences. Need at least {} records.".format(TIME_STEPS)
103
 
104
+ df_test_value = normalize_data(data)
105
+ # plot input test data
106
+ plot1 = plot_test_data(df_test_value)
107
+ # predict
108
+ anomalies = get_anomalies(df_test_value)
109
+ #plot anomalous data points
110
+ plot2 = plot_anomalies(df_test_value, data, anomalies)
111
+ return plot2
112
 
113
  outputs = gr.outputs.Image()
114