Zack commited on
Commit
836879e
·
1 Parent(s): 2637471

feat: Clean and add sales_hourly_short.csv

Browse files
Files changed (2) hide show
  1. app.py +15 -1
  2. sales_hourly_short.csv +0 -0
app.py CHANGED
@@ -80,6 +80,20 @@ def clean_data(df):
80
  # Rename column
81
  df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  return df
84
 
85
  else:
@@ -116,7 +130,7 @@ iface = gr.Interface(
116
  fn=master,
117
  inputs=gr.inputs.File(label="CSV File"),
118
  outputs=outputs,
119
- examples=["art_daily_jumpsup.csv","labor_hourly_short.csv"],
120
  title="Timeseries Anomaly Detection Using an Autoencoder",
121
  description="Anomaly detection of timeseries data."
122
  )
 
80
  # Rename column
81
  df.rename(columns={"Hourly_Labor_Hours_Total": "value"}, inplace=True)
82
 
83
+ elif "Date_CY" in df.columns and "Hour" in df.columns and "Net_Sales_CY" in df.columns:
84
+ # Convert "Date" and "Hour" columns into datetime format
85
+ df["timestamp"] = pd.to_datetime(df["Date_CY"]) + pd.to_timedelta(df["Hour"].astype(int), unit='h')
86
+
87
+ # Handle the case where hour is 24
88
+ df.loc[df["timestamp"].dt.hour == 24, "timestamp"] = df["timestamp"] + pd.DateOffset(days=1)
89
+ df["timestamp"] = df["timestamp"].dt.floor('h')
90
+
91
+ # Keep only necessary columns
92
+ df = df[["timestamp", "Net_Sales_CY"]]
93
+
94
+ # Rename column
95
+ df.rename(columns={"Net_Sales_CY": "value"}, inplace=True)
96
+
97
  return df
98
 
99
  else:
 
130
  fn=master,
131
  inputs=gr.inputs.File(label="CSV File"),
132
  outputs=outputs,
133
+ examples=["art_daily_jumpsup.csv","labor_hourly_short.csv, sales_hourly_short.csv"],
134
  title="Timeseries Anomaly Detection Using an Autoencoder",
135
  description="Anomaly detection of timeseries data."
136
  )
sales_hourly_short.csv ADDED
The diff for this file is too large to render. See raw diff