Spaces:
Running
Running
File size: 969 Bytes
aac08f8 eb25be6 a0841b5 eb25be6 2c632c2 aac08f8 2c632c2 eb25be6 f4c4c6b eb25be6 a0841b5 eb25be6 a0841b5 eb25be6 a0841b5 eb25be6 a0841b5 eb25be6 a0841b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# Run app again with same input if model gives repeating output.
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GenerationConfig
import streamlit as st
st.markdown(
"""
<style>
.title-input textarea {
height: 100px;
padding-top: 20px;
}
</style>
""",
unsafe_allow_html=True
)
model_name = "gpt2-large"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
title = st.text_input("Enter a title to generate a blog post:")
if title:
input_prompt = f"Blog Title: {title}\n\nBlog Post:\n"
input_ids = tokenizer.encode(input_prompt, return_tensors='pt')
generation_config = GenerationConfig(max_new_tokens=100, do_sample=True, temperature=0.7)
output_ids = model.generate(input_ids, generation_config=generation_config)[0]
output_text = tokenizer.decode(output_ids, skip_special_tokens=True)
st.write(output_text)
|