import transformers from transformers import GPT2LMHeadModel, GPT2Tokenizer, GenerationConfig import streamlit as st st.markdown( """ """, unsafe_allow_html=True ) model_name = "gpt2-large" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) title = st.text_input("Enter a title to generate a blog post:") if title: input_prompt = f"Blog Title: {title}\n\nBlog Post:\n" input_ids = tokenizer.encode(input_prompt, return_tensors='pt') generation_config = GenerationConfig(max_new_tokens=100, do_sample=True, temperature=0.7) output_ids = model.generate(input_ids, generation_config=generation_config)[0] output_text = tokenizer.decode(output_ids, skip_special_tokens=True) st.write(output_text)