Zainajabroh commited on
Commit
5f421d2
·
verified ·
1 Parent(s): 44382c1

Upload 5 files

Browse files
Approval_Credit_prediction_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bc39e76b66343512ee37728dc2d0f97ce3c0eccc15e9b7e815a5c163b0d37f6
3
+ size 61679353
Credit_Card_Approval.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from joblib import load
2
+ import numpy as np
3
+ import gradio as gr
4
+
5
+ # Load the model and transformers
6
+ encoder = load("encoder.joblib")
7
+ feature_scaler = load("Feature_scaler.joblib")
8
+ model = load("Approval_Credit_prediction_model.joblib")
9
+
10
+
11
+ def credit_classification(gender, car, properties, children, annual_income, education_level, marital_status, housing, age, work, mobile_phone, work_phone, phone, email, job, long_month, status):
12
+ gender = encoder['CODE_GENDER'].transform([gender])[0]
13
+ car = encoder["FLAG_OWN_CAR"].transform([car])[0]
14
+ properties = encoder['FLAG_OWN_REALTY'].transform([properties])[0]
15
+ children = encoder["CNT_CHILDREN"].transform([children])[0]
16
+ education_level = encoder["NAME_EDUCATION_TYPE"].transform([education_level])[0]
17
+ marital_status = encoder["NAME_FAMILY_STATUS"].transform([marital_status])[0]
18
+ housing = encoder["NAME_HOUSING_TYPE"].transform([housing])[0]
19
+ job = encoder["JOB"].transform([job])[0]
20
+ status = encoder["STATUS"].transform([status])[0]
21
+ feature = np.array([[gender, car, properties, children, annual_income, education_level, marital_status, housing, age, work, mobile_phone, work_phone, phone, email, job, long_month * -1, status]])
22
+ feature = feature_scaler.transform(feature)
23
+ predict = model.predict(feature)
24
+ predict = predict[0]
25
+ if predict == 0:
26
+ return gr.HTML(f"<div style='background-color:green; color:white; padding:10px; border-radius:5px;'>You are Not Risk, your credit card will get approval</div>")
27
+ else:
28
+ return gr.HTML(f"<div style='background-color:red; color:white; padding:10px; border-radius:5px;'>You are Risk, your credit card may be declined</div>")
29
+
30
+ # Define input components
31
+ inputs = [
32
+ gr.Dropdown(["F", "M"], label="Gender"),
33
+ gr.Dropdown(["N", "Y"], label="Do you have cars?"),
34
+ gr.Dropdown(["N", "Y"], label="Do you have property?"),
35
+ gr.Dropdown(['2+ children', 'No children', '1 children'], label="How many children do you have?"),
36
+ gr.Number(label="Annual Income($)"),
37
+ gr.Dropdown(['Secondary / secondary special', 'Higher education', 'Incomplete higher', 'Lower secondary', 'Academic degree'], label="Your last education"),
38
+ gr.Dropdown(['Married', 'Single / not married', 'Civil marriage', 'Separated', 'Widow'], label="Your marital status"),
39
+ gr.Dropdown(['With parents', 'House / apartment', 'Rented apartment', 'Municipal apartment', 'Co-op apartment', 'Office apartment'], label="Your housing type"),
40
+ gr.Number(label="Age"),
41
+ gr.Number(label="Years of work"),
42
+ gr.Dropdown([0, 1], label="Do you have mobile phone? (0 for 'no' 1 for 'yes')"),
43
+ gr.Dropdown([0, 1], label="Do you have work phone? (0 for 'no' 1 for 'yes')"),
44
+ gr.Dropdown([0, 1], label="Do you have phone? (0 for 'no' 1 for 'yes')"),
45
+ gr.Dropdown([0, 1], label="Do you have email? (0 for 'no' 1 for 'yes')"),
46
+ gr.Dropdown(['Managers', 'Private service staff', 'Laborers', 'Core staff', 'Drivers', 'High skill tech staff', 'Realty agents', 'Secretaries', 'Accountants', 'Sales staff', 'Medicine staff', 'Waiters/barmen staff', 'Low-skill Laborers', 'Cleaning staff', 'HR staff', 'Cooking staff', 'Security staff', 'IT staff'], label="Your job (if you can't find your job on the list, choose similar job)"),
47
+ gr.Number(label="How long you have been using credit card?"),
48
+ gr.Dropdown(['paid off that month', '1-29 days past due', 'No loan for the month', '60-89 days overdue', '30-59 days past due', 'Overdue or bad debts, write-offs for more than 150 days', '90-119 days overdue', '120-149 days overdue'], label="Punctuality of payment")
49
+ ]
50
+
51
+ # Create Gradio interface
52
+ UI = gr.Interface(fn=credit_classification,
53
+ inputs=inputs,
54
+ outputs=gr.HTML(label="Approval Credit Card Status"),
55
+ title="Credit Card Approval Prediction")
56
+
57
+ UI.launch()
Feature_scaler.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e236bc05d7c2551b351a50e968fd63d528eb84f8d5f7a53ae0a9430985c7ce5
3
+ size 1983
encoder.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:514bb28b5c2283899ea4cb1fe95af3aaf86bd027ce615d2c21fbee00af7960c5
3
+ size 3750
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ numpy==1.26.4
2
+ scikit-learn == 1.6.0