SalesAI / app.py
Zasha1's picture
Update app.py
6b2d7b0 verified
raw
history blame
11.2 kB
from streamlit_webrtc import webrtc_streamer, WebRtcMode
from sentiment_analysis import analyze_sentiment, transcribe_with_chunks
from product_recommender import ProductRecommender
from objection_handler import ObjectionHandler
from google_sheets import fetch_call_data, store_data_in_sheet
from sentence_transformers import SentenceTransformer
from env_setup import config
import re
import uuid
import pandas as pd
import plotly.express as px
import streamlit as st
import numpy as np
from io import BytesIO
import wave
# Initialize components
objection_handler = ObjectionHandler("objections.csv") # Use relative path
product_recommender = ProductRecommender("recommendations.csv") # Use relative path
model = SentenceTransformer('all-MiniLM-L6-v2')
def generate_comprehensive_summary(chunks):
"""
Generate a comprehensive summary from conversation chunks
"""
# Extract full text from chunks
full_text = " ".join([chunk[0] for chunk in chunks])
# Perform basic analysis
total_chunks = len(chunks)
sentiments = [chunk[1] for chunk in chunks]
# Determine overall conversation context
context_keywords = {
'product_inquiry': ['dress', 'product', 'price', 'stock'],
'pricing': ['cost', 'price', 'budget'],
'negotiation': ['installment', 'payment', 'manage']
}
# Detect conversation themes
themes = []
for keyword_type, keywords in context_keywords.items():
if any(keyword.lower() in full_text.lower() for keyword in keywords):
themes.append(keyword_type)
# Basic sentiment analysis
positive_count = sentiments.count('POSITIVE')
negative_count = sentiments.count('NEGATIVE')
neutral_count = sentiments.count('NEUTRAL')
# Key interaction highlights
key_interactions = []
for chunk in chunks:
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
key_interactions.append(chunk[0])
# Construct summary
summary = f"Conversation Summary:\n"
# Context and themes
if 'product_inquiry' in themes:
summary += "• Customer initiated a product inquiry about items.\n"
if 'pricing' in themes:
summary += "• Price and budget considerations were discussed.\n"
if 'negotiation' in themes:
summary += "• Customer and seller explored flexible payment options.\n"
# Sentiment insights
summary += f"\nConversation Sentiment:\n"
summary += f"• Positive Interactions: {positive_count}\n"
summary += f"• Negative Interactions: {negative_count}\n"
summary += f"• Neutral Interactions: {neutral_count}\n"
# Key highlights
summary += "\nKey Conversation Points:\n"
for interaction in key_interactions[:3]: # Limit to top 3 key points
summary += f"• {interaction}\n"
# Conversation outcome
if positive_count > negative_count:
summary += "\nOutcome: Constructive and potentially successful interaction."
elif negative_count > positive_count:
summary += "\nOutcome: Interaction may require further follow-up."
else:
summary += "\nOutcome: Neutral interaction with potential for future engagement."
return summary
def is_valid_input(text):
text = text.strip().lower()
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
return False
return True
def is_relevant_sentiment(sentiment_score):
return sentiment_score > 0.4
def calculate_overall_sentiment(sentiment_scores):
if sentiment_scores:
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
overall_sentiment = (
"POSITIVE" if average_sentiment > 0 else
"NEGATIVE" if average_sentiment < 0 else
"NEUTRAL"
)
else:
overall_sentiment = "NEUTRAL"
return overall_sentiment
def handle_objection(text):
query_embedding = model.encode([text])
distances, indices = objection_handler.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
responses = objection_handler.handle_objection(text)
return "\n".join(responses) if responses else "No objection response found."
return "No objection response found."
def transcribe_audio(audio_bytes, sample_rate=16000):
"""Transcribe audio using the transcribe_with_chunks function from sentiment_analysis.py."""
try:
# Save audio bytes to a temporary WAV file
with BytesIO() as wav_buffer:
with wave.open(wav_buffer, 'wb') as wf:
wf.setnchannels(1) # Mono audio
wf.setsampwidth(2) # 2 bytes for int16
wf.setframerate(sample_rate) # Sample rate
wf.writeframes(audio_bytes)
# Use the transcribe_with_chunks function from sentiment_analysis.py
chunks = transcribe_with_chunks({}) # Pass an empty objections_dict for now
if chunks:
return chunks[-1][0] # Return the latest transcribed text
except Exception as e:
print(f"Error transcribing audio: {e}")
return None
def real_time_analysis():
st.info("Listening... Say 'stop' to end the process.")
def audio_frame_callback(audio_frame):
# Convert audio frame to bytes
audio_data = audio_frame.to_ndarray()
print(f"Audio data shape: {audio_data.shape}") # Debug: Check audio data shape
print(f"Audio data sample: {audio_data[:10]}") # Debug: Check first 10 samples
audio_bytes = (audio_data * 32767).astype(np.int16).tobytes() # Convert to int16 format
# Transcribe the audio
text = transcribe_audio(audio_bytes)
if text:
st.write(f"*Recognized Text:* {text}")
# Analyze sentiment
sentiment, score = analyze_sentiment(text)
st.write(f"*Sentiment:* {sentiment} (Score: {score})")
# Handle objection
objection_response = handle_objection(text)
st.write(f"*Objection Response:* {objection_response}")
# Get product recommendation
recommendations = []
if is_valid_input(text) and is_relevant_sentiment(score):
query_embedding = model.encode([text])
distances, indices = product_recommender.index.search(query_embedding, 1)
if distances[0][0] < 1.5: # Similarity threshold
recommendations = product_recommender.get_recommendations(text)
if recommendations:
st.write("*Product Recommendations:*")
for rec in recommendations:
st.write(rec)
else:
st.error("No transcription returned.") # Debug: Check if transcription fails
return audio_frame
# Start WebRTC audio stream
webrtc_ctx = webrtc_streamer(
key="real-time-audio",
mode=WebRtcMode.SENDONLY,
audio_frame_callback=audio_frame_callback,
media_stream_constraints={"audio": True, "video": False},
)
def run_app():
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
st.title("AI Sales Call Assistant")
st.sidebar.title("Navigation")
app_mode = st.sidebar.radio("Choose a mode:", ["Real-Time Call Analysis", "Dashboard"])
if app_mode == "Real-Time Call Analysis":
st.header("Real-Time Sales Call Analysis")
real_time_analysis()
elif app_mode == "Dashboard":
st.header("Call Summaries and Sentiment Analysis")
try:
data = fetch_call_data(config["google_sheet_id"])
if data.empty:
st.warning("No data available in the Google Sheet.")
else:
# Sentiment Visualizations
sentiment_counts = data['Sentiment'].value_counts()
# Pie Chart
col1, col2 = st.columns(2)
with col1:
st.subheader("Sentiment Distribution")
fig_pie = px.pie(
values=sentiment_counts.values,
names=sentiment_counts.index,
title='Call Sentiment Breakdown',
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_pie)
# Bar Chart
with col2:
st.subheader("Sentiment Counts")
fig_bar = px.bar(
x=sentiment_counts.index,
y=sentiment_counts.values,
title='Number of Calls by Sentiment',
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
color=sentiment_counts.index,
color_discrete_map={
'POSITIVE': 'green',
'NEGATIVE': 'red',
'NEUTRAL': 'blue'
}
)
st.plotly_chart(fig_bar)
# Existing Call Details Section
st.subheader("All Calls")
display_data = data.copy()
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
# Dropdown to select Call ID
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
# Display selected Call ID details
call_details = data[data['Call ID'] == call_id]
if not call_details.empty:
st.subheader("Detailed Call Information")
st.write(f"**Call ID:** {call_id}")
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
# Expand summary section
st.subheader("Full Call Summary")
st.text_area("Summary:",
value=call_details.iloc[0]['Summary'],
height=200,
disabled=True)
# Show all chunks for the selected call
st.subheader("Conversation Chunks")
for _, row in call_details.iterrows():
if pd.notna(row['Chunk']):
st.write(f"**Chunk:** {row['Chunk']}")
st.write(f"**Sentiment:** {row['Sentiment']}")
st.write("---") # Separator between chunks
else:
st.error("No details available for the selected Call ID.")
except Exception as e:
st.error(f"Error loading dashboard: {e}")
if __name__ == "__main__":
run_app()