Update app.py
Browse files
app.py
CHANGED
@@ -15,75 +15,78 @@ from io import BytesIO
|
|
15 |
import wave
|
16 |
|
17 |
# Initialize components
|
18 |
-
|
19 |
-
|
20 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
def is_valid_input(text):
|
89 |
text = text.strip().lower()
|
@@ -94,109 +97,25 @@ def is_valid_input(text):
|
|
94 |
def is_relevant_sentiment(sentiment_score):
|
95 |
return sentiment_score > 0.4
|
96 |
|
97 |
-
def
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
elif app_mode == "Dashboard":
|
109 |
-
st.header("Call Summaries and Sentiment Analysis")
|
110 |
-
try:
|
111 |
-
data = fetch_call_data(config["google_sheet_id"])
|
112 |
-
if data.empty:
|
113 |
-
st.warning("No data available in the Google Sheet.")
|
114 |
-
else:
|
115 |
-
sentiment_counts = data['Sentiment'].value_counts()
|
116 |
-
|
117 |
-
col1, col2 = st.columns(2)
|
118 |
-
with col1:
|
119 |
-
st.subheader("Sentiment Distribution")
|
120 |
-
fig_pie = px.pie(
|
121 |
-
values=sentiment_counts.values,
|
122 |
-
names=sentiment_counts.index,
|
123 |
-
title='Call Sentiment Breakdown',
|
124 |
-
color_discrete_map={
|
125 |
-
'POSITIVE': 'green',
|
126 |
-
'NEGATIVE': 'red',
|
127 |
-
'NEUTRAL': 'blue'
|
128 |
-
}
|
129 |
-
)
|
130 |
-
st.plotly_chart(fig_pie)
|
131 |
-
|
132 |
-
with col2:
|
133 |
-
st.subheader("Sentiment Counts")
|
134 |
-
fig_bar = px.bar(
|
135 |
-
x=sentiment_counts.index,
|
136 |
-
y=sentiment_counts.values,
|
137 |
-
title='Number of Calls by Sentiment',
|
138 |
-
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
139 |
-
color=sentiment_counts.index,
|
140 |
-
color_discrete_map={
|
141 |
-
'POSITIVE': 'green',
|
142 |
-
'NEGATIVE': 'red',
|
143 |
-
'NEUTRAL': 'blue'
|
144 |
-
}
|
145 |
-
)
|
146 |
-
st.plotly_chart(fig_bar)
|
147 |
-
|
148 |
-
st.subheader("All Calls")
|
149 |
-
display_data = data.copy()
|
150 |
-
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
151 |
-
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
161 |
-
|
162 |
-
st.subheader("Full Call Summary")
|
163 |
-
st.text_area("Summary:",
|
164 |
-
value=call_details.iloc[0]['Summary'],
|
165 |
-
height=200,
|
166 |
-
disabled=True)
|
167 |
-
|
168 |
-
st.subheader("Conversation Chunks")
|
169 |
-
for _, row in call_details.iterrows():
|
170 |
-
if pd.notna(row['Chunk']):
|
171 |
-
st.write(f"**Chunk:** {row['Chunk']}")
|
172 |
-
st.write(f"**Sentiment:** {row['Sentiment']}")
|
173 |
-
st.write("---")
|
174 |
-
else:
|
175 |
-
st.error("No details available for the selected Call ID.")
|
176 |
-
except Exception as e:
|
177 |
-
st.error(f"Error loading dashboard: {e}")
|
178 |
-
|
179 |
-
if __name__ == "__main__":
|
180 |
-
run_app()from streamlit_webrtc import webrtc_streamer, WebRtcMode
|
181 |
-
from sentiment_analysis import analyze_sentiment
|
182 |
-
from product_recommender import ProductRecommender
|
183 |
-
from objection_handler import ObjectionHandler
|
184 |
-
from google_sheets import fetch_call_data, store_data_in_sheet
|
185 |
-
from sentence_transformers import SentenceTransformer
|
186 |
-
from env_setup import config
|
187 |
-
import re
|
188 |
-
import uuid
|
189 |
-
import pandas as pd
|
190 |
-
import plotly.express as px
|
191 |
-
import streamlit as st
|
192 |
-
import numpy as np
|
193 |
-
from io import BytesIO
|
194 |
-
import wave
|
195 |
-
|
196 |
-
# Initialize components
|
197 |
-
objection_handler = ObjectionHandler('objections.csv')
|
198 |
-
product_recommender = ProductRecommender('recommendations.csv')
|
199 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
200 |
|
201 |
def real_time_analysis():
|
202 |
st.info("Listening... Say 'stop' to end the process.")
|
@@ -256,23 +175,6 @@ def transcribe_audio(audio_bytes):
|
|
256 |
# For now, we'll just return a dummy text
|
257 |
return "This is a placeholder transcription."
|
258 |
|
259 |
-
def handle_objection(text):
|
260 |
-
query_embedding = model.encode([text])
|
261 |
-
distances, indices = objection_handler.index.search(query_embedding, 1)
|
262 |
-
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
|
263 |
-
responses = objection_handler.handle_objection(text)
|
264 |
-
return "\n".join(responses) if responses else "No objection response found."
|
265 |
-
return "No objection response found."
|
266 |
-
|
267 |
-
def is_valid_input(text):
|
268 |
-
text = text.strip().lower()
|
269 |
-
if len(text) < 3 or re.match(r'^[a-zA-Z\s]*$', text) is None:
|
270 |
-
return False
|
271 |
-
return True
|
272 |
-
|
273 |
-
def is_relevant_sentiment(sentiment_score):
|
274 |
-
return sentiment_score > 0.4
|
275 |
-
|
276 |
def run_app():
|
277 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
278 |
st.title("AI Sales Call Assistant")
|
@@ -291,65 +193,73 @@ def run_app():
|
|
291 |
if data.empty:
|
292 |
st.warning("No data available in the Google Sheet.")
|
293 |
else:
|
|
|
294 |
sentiment_counts = data['Sentiment'].value_counts()
|
295 |
-
|
|
|
296 |
col1, col2 = st.columns(2)
|
297 |
with col1:
|
298 |
st.subheader("Sentiment Distribution")
|
299 |
fig_pie = px.pie(
|
300 |
-
values=sentiment_counts.values,
|
301 |
-
names=sentiment_counts.index,
|
302 |
title='Call Sentiment Breakdown',
|
303 |
color_discrete_map={
|
304 |
-
'POSITIVE': 'green',
|
305 |
-
'NEGATIVE': 'red',
|
306 |
'NEUTRAL': 'blue'
|
307 |
}
|
308 |
)
|
309 |
st.plotly_chart(fig_pie)
|
310 |
|
|
|
311 |
with col2:
|
312 |
st.subheader("Sentiment Counts")
|
313 |
fig_bar = px.bar(
|
314 |
-
x=sentiment_counts.index,
|
315 |
-
y=sentiment_counts.values,
|
316 |
title='Number of Calls by Sentiment',
|
317 |
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
318 |
color=sentiment_counts.index,
|
319 |
color_discrete_map={
|
320 |
-
'POSITIVE': 'green',
|
321 |
-
'NEGATIVE': 'red',
|
322 |
'NEUTRAL': 'blue'
|
323 |
}
|
324 |
)
|
325 |
st.plotly_chart(fig_bar)
|
326 |
|
|
|
327 |
st.subheader("All Calls")
|
328 |
display_data = data.copy()
|
329 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
330 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
331 |
|
|
|
332 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
333 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
334 |
|
|
|
335 |
call_details = data[data['Call ID'] == call_id]
|
336 |
if not call_details.empty:
|
337 |
st.subheader("Detailed Call Information")
|
338 |
st.write(f"**Call ID:** {call_id}")
|
339 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
340 |
-
|
|
|
341 |
st.subheader("Full Call Summary")
|
342 |
-
st.text_area("Summary:",
|
343 |
-
value=call_details.iloc[0]['Summary'],
|
344 |
-
height=200,
|
345 |
disabled=True)
|
346 |
-
|
|
|
347 |
st.subheader("Conversation Chunks")
|
348 |
for _, row in call_details.iterrows():
|
349 |
-
if pd.notna(row['Chunk']):
|
350 |
st.write(f"**Chunk:** {row['Chunk']}")
|
351 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
352 |
-
st.write("---")
|
353 |
else:
|
354 |
st.error("No details available for the selected Call ID.")
|
355 |
except Exception as e:
|
|
|
15 |
import wave
|
16 |
|
17 |
# Initialize components
|
18 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
19 |
+
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
20 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
21 |
|
22 |
+
def generate_comprehensive_summary(chunks):
|
23 |
+
"""
|
24 |
+
Generate a comprehensive summary from conversation chunks
|
25 |
+
"""
|
26 |
+
# Extract full text from chunks
|
27 |
+
full_text = " ".join([chunk[0] for chunk in chunks])
|
28 |
+
|
29 |
+
# Perform basic analysis
|
30 |
+
total_chunks = len(chunks)
|
31 |
+
sentiments = [chunk[1] for chunk in chunks]
|
32 |
+
|
33 |
+
# Determine overall conversation context
|
34 |
+
context_keywords = {
|
35 |
+
'product_inquiry': ['dress', 'product', 'price', 'stock'],
|
36 |
+
'pricing': ['cost', 'price', 'budget'],
|
37 |
+
'negotiation': ['installment', 'payment', 'manage']
|
38 |
+
}
|
39 |
+
|
40 |
+
# Detect conversation themes
|
41 |
+
themes = []
|
42 |
+
for keyword_type, keywords in context_keywords.items():
|
43 |
+
if any(keyword.lower() in full_text.lower() for keyword in keywords):
|
44 |
+
themes.append(keyword_type)
|
45 |
+
|
46 |
+
# Basic sentiment analysis
|
47 |
+
positive_count = sentiments.count('POSITIVE')
|
48 |
+
negative_count = sentiments.count('NEGATIVE')
|
49 |
+
neutral_count = sentiments.count('NEUTRAL')
|
50 |
+
|
51 |
+
# Key interaction highlights
|
52 |
+
key_interactions = []
|
53 |
+
for chunk in chunks:
|
54 |
+
if any(keyword.lower() in chunk[0].lower() for keyword in ['price', 'dress', 'stock', 'installment']):
|
55 |
+
key_interactions.append(chunk[0])
|
56 |
+
|
57 |
+
# Construct summary
|
58 |
+
summary = f"Conversation Summary:\n"
|
59 |
+
|
60 |
+
# Context and themes
|
61 |
+
if 'product_inquiry' in themes:
|
62 |
+
summary += "• Customer initiated a product inquiry about items.\n"
|
63 |
+
|
64 |
+
if 'pricing' in themes:
|
65 |
+
summary += "• Price and budget considerations were discussed.\n"
|
66 |
+
|
67 |
+
if 'negotiation' in themes:
|
68 |
+
summary += "• Customer and seller explored flexible payment options.\n"
|
69 |
+
|
70 |
+
# Sentiment insights
|
71 |
+
summary += f"\nConversation Sentiment:\n"
|
72 |
+
summary += f"• Positive Interactions: {positive_count}\n"
|
73 |
+
summary += f"• Negative Interactions: {negative_count}\n"
|
74 |
+
summary += f"• Neutral Interactions: {neutral_count}\n"
|
75 |
+
|
76 |
+
# Key highlights
|
77 |
+
summary += "\nKey Conversation Points:\n"
|
78 |
+
for interaction in key_interactions[:3]: # Limit to top 3 key points
|
79 |
+
summary += f"• {interaction}\n"
|
80 |
+
|
81 |
+
# Conversation outcome
|
82 |
+
if positive_count > negative_count:
|
83 |
+
summary += "\nOutcome: Constructive and potentially successful interaction."
|
84 |
+
elif negative_count > positive_count:
|
85 |
+
summary += "\nOutcome: Interaction may require further follow-up."
|
86 |
+
else:
|
87 |
+
summary += "\nOutcome: Neutral interaction with potential for future engagement."
|
88 |
+
|
89 |
+
return summary
|
90 |
|
91 |
def is_valid_input(text):
|
92 |
text = text.strip().lower()
|
|
|
97 |
def is_relevant_sentiment(sentiment_score):
|
98 |
return sentiment_score > 0.4
|
99 |
|
100 |
+
def calculate_overall_sentiment(sentiment_scores):
|
101 |
+
if sentiment_scores:
|
102 |
+
average_sentiment = sum(sentiment_scores) / len(sentiment_scores)
|
103 |
+
overall_sentiment = (
|
104 |
+
"POSITIVE" if average_sentiment > 0 else
|
105 |
+
"NEGATIVE" if average_sentiment < 0 else
|
106 |
+
"NEUTRAL"
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
overall_sentiment = "NEUTRAL"
|
110 |
+
return overall_sentiment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
def handle_objection(text):
|
113 |
+
query_embedding = model.encode([text])
|
114 |
+
distances, indices = objection_handler.index.search(query_embedding, 1)
|
115 |
+
if distances[0][0] < 1.5: # Adjust similarity threshold as needed
|
116 |
+
responses = objection_handler.handle_objection(text)
|
117 |
+
return "\n".join(responses) if responses else "No objection response found."
|
118 |
+
return "No objection response found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def real_time_analysis():
|
121 |
st.info("Listening... Say 'stop' to end the process.")
|
|
|
175 |
# For now, we'll just return a dummy text
|
176 |
return "This is a placeholder transcription."
|
177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
def run_app():
|
179 |
st.set_page_config(page_title="Sales Call Assistant", layout="wide")
|
180 |
st.title("AI Sales Call Assistant")
|
|
|
193 |
if data.empty:
|
194 |
st.warning("No data available in the Google Sheet.")
|
195 |
else:
|
196 |
+
# Sentiment Visualizations
|
197 |
sentiment_counts = data['Sentiment'].value_counts()
|
198 |
+
|
199 |
+
# Pie Chart
|
200 |
col1, col2 = st.columns(2)
|
201 |
with col1:
|
202 |
st.subheader("Sentiment Distribution")
|
203 |
fig_pie = px.pie(
|
204 |
+
values=sentiment_counts.values,
|
205 |
+
names=sentiment_counts.index,
|
206 |
title='Call Sentiment Breakdown',
|
207 |
color_discrete_map={
|
208 |
+
'POSITIVE': 'green',
|
209 |
+
'NEGATIVE': 'red',
|
210 |
'NEUTRAL': 'blue'
|
211 |
}
|
212 |
)
|
213 |
st.plotly_chart(fig_pie)
|
214 |
|
215 |
+
# Bar Chart
|
216 |
with col2:
|
217 |
st.subheader("Sentiment Counts")
|
218 |
fig_bar = px.bar(
|
219 |
+
x=sentiment_counts.index,
|
220 |
+
y=sentiment_counts.values,
|
221 |
title='Number of Calls by Sentiment',
|
222 |
labels={'x': 'Sentiment', 'y': 'Number of Calls'},
|
223 |
color=sentiment_counts.index,
|
224 |
color_discrete_map={
|
225 |
+
'POSITIVE': 'green',
|
226 |
+
'NEGATIVE': 'red',
|
227 |
'NEUTRAL': 'blue'
|
228 |
}
|
229 |
)
|
230 |
st.plotly_chart(fig_bar)
|
231 |
|
232 |
+
# Existing Call Details Section
|
233 |
st.subheader("All Calls")
|
234 |
display_data = data.copy()
|
235 |
display_data['Summary Preview'] = display_data['Summary'].str[:100] + '...'
|
236 |
st.dataframe(display_data[['Call ID', 'Chunk', 'Sentiment', 'Summary Preview', 'Overall Sentiment']])
|
237 |
|
238 |
+
# Dropdown to select Call ID
|
239 |
unique_call_ids = data[data['Call ID'] != '']['Call ID'].unique()
|
240 |
call_id = st.selectbox("Select a Call ID to view details:", unique_call_ids)
|
241 |
|
242 |
+
# Display selected Call ID details
|
243 |
call_details = data[data['Call ID'] == call_id]
|
244 |
if not call_details.empty:
|
245 |
st.subheader("Detailed Call Information")
|
246 |
st.write(f"**Call ID:** {call_id}")
|
247 |
st.write(f"**Overall Sentiment:** {call_details.iloc[0]['Overall Sentiment']}")
|
248 |
+
|
249 |
+
# Expand summary section
|
250 |
st.subheader("Full Call Summary")
|
251 |
+
st.text_area("Summary:",
|
252 |
+
value=call_details.iloc[0]['Summary'],
|
253 |
+
height=200,
|
254 |
disabled=True)
|
255 |
+
|
256 |
+
# Show all chunks for the selected call
|
257 |
st.subheader("Conversation Chunks")
|
258 |
for _, row in call_details.iterrows():
|
259 |
+
if pd.notna(row['Chunk']):
|
260 |
st.write(f"**Chunk:** {row['Chunk']}")
|
261 |
st.write(f"**Sentiment:** {row['Sentiment']}")
|
262 |
+
st.write("---") # Separator between chunks
|
263 |
else:
|
264 |
st.error("No details available for the selected Call ID.")
|
265 |
except Exception as e:
|