Update sentiment_analysis.py
Browse files- sentiment_analysis.py +176 -176
sentiment_analysis.py
CHANGED
@@ -1,177 +1,177 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import time
|
4 |
-
import
|
5 |
-
from vosk import Model, KaldiRecognizer
|
6 |
-
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
-
from huggingface_hub import login
|
8 |
-
from product_recommender import ProductRecommender
|
9 |
-
from objection_handler import load_objections, check_objections # Ensure check_objections is imported
|
10 |
-
from objection_handler import ObjectionHandler
|
11 |
-
from env_setup import config
|
12 |
-
from sentence_transformers import SentenceTransformer
|
13 |
-
from dotenv import load_dotenv
|
14 |
-
|
15 |
-
# Load environment variables
|
16 |
-
load_dotenv()
|
17 |
-
|
18 |
-
# Initialize the ProductRecommender
|
19 |
-
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
20 |
-
|
21 |
-
# Hugging Face API setup
|
22 |
-
huggingface_api_key = config["huggingface_api_key"]
|
23 |
-
login(token=huggingface_api_key)
|
24 |
-
|
25 |
-
# Sentiment Analysis Model
|
26 |
-
model_name = "tabularisai/multilingual-sentiment-analysis"
|
27 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
-
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
30 |
-
|
31 |
-
# Vosk Speech Recognition Model
|
32 |
-
vosk_model_path = config["vosk_model_path"]
|
33 |
-
|
34 |
-
if not vosk_model_path:
|
35 |
-
raise ValueError("Error: vosk_model_path is not set in the .env file.")
|
36 |
-
|
37 |
-
try:
|
38 |
-
vosk_model = Model(vosk_model_path)
|
39 |
-
print("Vosk model loaded successfully.")
|
40 |
-
except Exception as e:
|
41 |
-
raise ValueError(f"Failed to load Vosk model: {e}")
|
42 |
-
|
43 |
-
recognizer = KaldiRecognizer(vosk_model, 16000)
|
44 |
-
audio = pyaudio.PyAudio()
|
45 |
-
|
46 |
-
stream = audio.open(format=pyaudio.paInt16,
|
47 |
-
channels=1,
|
48 |
-
rate=16000,
|
49 |
-
input=True,
|
50 |
-
frames_per_buffer=4000)
|
51 |
-
stream.start_stream()
|
52 |
-
|
53 |
-
# Function to analyze sentiment
|
54 |
-
def preprocess_text(text):
|
55 |
-
"""Preprocess text for better sentiment analysis."""
|
56 |
-
# Strip whitespace and convert to lowercase
|
57 |
-
processed = text.strip().lower()
|
58 |
-
return processed
|
59 |
-
|
60 |
-
def preprocess_text(text):
|
61 |
-
"""Preprocess text for better sentiment analysis."""
|
62 |
-
return text.strip().lower()
|
63 |
-
|
64 |
-
def analyze_sentiment(text):
|
65 |
-
"""Analyze sentiment of the text using Hugging Face model."""
|
66 |
-
try:
|
67 |
-
if not text.strip():
|
68 |
-
return "NEUTRAL", 0.0
|
69 |
-
|
70 |
-
processed_text = preprocess_text(text)
|
71 |
-
result = sentiment_analyzer(processed_text)[0]
|
72 |
-
|
73 |
-
print(f"Sentiment Analysis Result: {result}")
|
74 |
-
|
75 |
-
# Map raw labels to sentiments
|
76 |
-
sentiment_map = {
|
77 |
-
'Very Negative': "NEGATIVE",
|
78 |
-
'Negative': "NEGATIVE",
|
79 |
-
'Neutral': "NEUTRAL",
|
80 |
-
'Positive': "POSITIVE",
|
81 |
-
'Very Positive': "POSITIVE"
|
82 |
-
}
|
83 |
-
|
84 |
-
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
|
85 |
-
return sentiment, result['score']
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
print(f"Error in sentiment analysis: {e}")
|
89 |
-
return "NEUTRAL", 0.5
|
90 |
-
|
91 |
-
def transcribe_with_chunks(objections_dict):
|
92 |
-
"""Perform real-time transcription with sentiment analysis."""
|
93 |
-
print("Say 'start listening' to begin transcription. Say 'stop listening' to stop.")
|
94 |
-
is_listening = False
|
95 |
-
chunks = []
|
96 |
-
current_chunk = []
|
97 |
-
chunk_start_time = time.time()
|
98 |
-
|
99 |
-
# Initialize handlers with semantic search capabilities
|
100 |
-
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
101 |
-
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
102 |
-
|
103 |
-
# Load the embeddings model once
|
104 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
105 |
-
|
106 |
-
try:
|
107 |
-
while True:
|
108 |
-
data = stream.read(4000, exception_on_overflow=False)
|
109 |
-
|
110 |
-
if recognizer.AcceptWaveform(data):
|
111 |
-
result = recognizer.Result()
|
112 |
-
text = json.loads(result)["text"]
|
113 |
-
|
114 |
-
if "start listening" in text.lower():
|
115 |
-
is_listening = True
|
116 |
-
print("Listening started. Speak into the microphone.")
|
117 |
-
continue
|
118 |
-
elif "stop listening" in text.lower():
|
119 |
-
is_listening = False
|
120 |
-
print("Listening stopped.")
|
121 |
-
if current_chunk:
|
122 |
-
chunk_text = " ".join(current_chunk)
|
123 |
-
sentiment, score = analyze_sentiment(chunk_text)
|
124 |
-
chunks.append((chunk_text, sentiment, score))
|
125 |
-
current_chunk = []
|
126 |
-
continue
|
127 |
-
|
128 |
-
if is_listening and text.strip():
|
129 |
-
print(f"Transcription: {text}")
|
130 |
-
current_chunk.append(text)
|
131 |
-
|
132 |
-
if time.time() - chunk_start_time > 3:
|
133 |
-
if current_chunk:
|
134 |
-
chunk_text = " ".join(current_chunk)
|
135 |
-
|
136 |
-
# Always process sentiment
|
137 |
-
sentiment, score = analyze_sentiment(chunk_text)
|
138 |
-
chunks.append((chunk_text, sentiment, score))
|
139 |
-
|
140 |
-
# Get objection responses and check similarity score
|
141 |
-
query_embedding = model.encode([chunk_text])
|
142 |
-
distances, indices = objection_handler.index.search(query_embedding, 1)
|
143 |
-
|
144 |
-
# If similarity is high enough, show objection response
|
145 |
-
if distances[0][0] < 1.5: # Threshold for similarity
|
146 |
-
responses = objection_handler.handle_objection(chunk_text)
|
147 |
-
if responses:
|
148 |
-
print("\nSuggested Response:")
|
149 |
-
for response in responses:
|
150 |
-
print(f"→ {response}")
|
151 |
-
|
152 |
-
# Get product recommendations and check similarity score
|
153 |
-
distances, indices = product_recommender.index.search(query_embedding, 1)
|
154 |
-
|
155 |
-
# If similarity is high enough, show recommendations
|
156 |
-
if distances[0][0] < 1.5: # Threshold for similarity
|
157 |
-
recommendations = product_recommender.get_recommendations(chunk_text)
|
158 |
-
if recommendations:
|
159 |
-
print(f"\nRecommendations for this response:")
|
160 |
-
for idx, rec in enumerate(recommendations, 1):
|
161 |
-
print(f"{idx}. {rec}")
|
162 |
-
|
163 |
-
print("\n")
|
164 |
-
current_chunk = []
|
165 |
-
chunk_start_time = time.time()
|
166 |
-
|
167 |
-
except KeyboardInterrupt:
|
168 |
-
print("\nExiting...")
|
169 |
-
stream.stop_stream()
|
170 |
-
|
171 |
-
return chunks
|
172 |
-
|
173 |
-
if __name__ == "__main__":
|
174 |
-
objections_file_path = r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv"
|
175 |
-
objections_dict = load_objections(objections_file_path)
|
176 |
-
transcribed_chunks = transcribe_with_chunks(objections_dict)
|
177 |
print("Final transcriptions and sentiments:", transcribed_chunks)
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import speech_recognition as sr
|
5 |
+
from vosk import Model, KaldiRecognizer
|
6 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
+
from huggingface_hub import login
|
8 |
+
from product_recommender import ProductRecommender
|
9 |
+
from objection_handler import load_objections, check_objections # Ensure check_objections is imported
|
10 |
+
from objection_handler import ObjectionHandler
|
11 |
+
from env_setup import config
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
# Load environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Initialize the ProductRecommender
|
19 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
20 |
+
|
21 |
+
# Hugging Face API setup
|
22 |
+
huggingface_api_key = config["huggingface_api_key"]
|
23 |
+
login(token=huggingface_api_key)
|
24 |
+
|
25 |
+
# Sentiment Analysis Model
|
26 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
30 |
+
|
31 |
+
# Vosk Speech Recognition Model
|
32 |
+
vosk_model_path = config["vosk_model_path"]
|
33 |
+
|
34 |
+
if not vosk_model_path:
|
35 |
+
raise ValueError("Error: vosk_model_path is not set in the .env file.")
|
36 |
+
|
37 |
+
try:
|
38 |
+
vosk_model = Model(vosk_model_path)
|
39 |
+
print("Vosk model loaded successfully.")
|
40 |
+
except Exception as e:
|
41 |
+
raise ValueError(f"Failed to load Vosk model: {e}")
|
42 |
+
|
43 |
+
recognizer = KaldiRecognizer(vosk_model, 16000)
|
44 |
+
audio = pyaudio.PyAudio()
|
45 |
+
|
46 |
+
stream = audio.open(format=pyaudio.paInt16,
|
47 |
+
channels=1,
|
48 |
+
rate=16000,
|
49 |
+
input=True,
|
50 |
+
frames_per_buffer=4000)
|
51 |
+
stream.start_stream()
|
52 |
+
|
53 |
+
# Function to analyze sentiment
|
54 |
+
def preprocess_text(text):
|
55 |
+
"""Preprocess text for better sentiment analysis."""
|
56 |
+
# Strip whitespace and convert to lowercase
|
57 |
+
processed = text.strip().lower()
|
58 |
+
return processed
|
59 |
+
|
60 |
+
def preprocess_text(text):
|
61 |
+
"""Preprocess text for better sentiment analysis."""
|
62 |
+
return text.strip().lower()
|
63 |
+
|
64 |
+
def analyze_sentiment(text):
|
65 |
+
"""Analyze sentiment of the text using Hugging Face model."""
|
66 |
+
try:
|
67 |
+
if not text.strip():
|
68 |
+
return "NEUTRAL", 0.0
|
69 |
+
|
70 |
+
processed_text = preprocess_text(text)
|
71 |
+
result = sentiment_analyzer(processed_text)[0]
|
72 |
+
|
73 |
+
print(f"Sentiment Analysis Result: {result}")
|
74 |
+
|
75 |
+
# Map raw labels to sentiments
|
76 |
+
sentiment_map = {
|
77 |
+
'Very Negative': "NEGATIVE",
|
78 |
+
'Negative': "NEGATIVE",
|
79 |
+
'Neutral': "NEUTRAL",
|
80 |
+
'Positive': "POSITIVE",
|
81 |
+
'Very Positive': "POSITIVE"
|
82 |
+
}
|
83 |
+
|
84 |
+
sentiment = sentiment_map.get(result['label'], "NEUTRAL")
|
85 |
+
return sentiment, result['score']
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
print(f"Error in sentiment analysis: {e}")
|
89 |
+
return "NEUTRAL", 0.5
|
90 |
+
|
91 |
+
def transcribe_with_chunks(objections_dict):
|
92 |
+
"""Perform real-time transcription with sentiment analysis."""
|
93 |
+
print("Say 'start listening' to begin transcription. Say 'stop listening' to stop.")
|
94 |
+
is_listening = False
|
95 |
+
chunks = []
|
96 |
+
current_chunk = []
|
97 |
+
chunk_start_time = time.time()
|
98 |
+
|
99 |
+
# Initialize handlers with semantic search capabilities
|
100 |
+
objection_handler = ObjectionHandler(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv")
|
101 |
+
product_recommender = ProductRecommender(r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet2.csv")
|
102 |
+
|
103 |
+
# Load the embeddings model once
|
104 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
105 |
+
|
106 |
+
try:
|
107 |
+
while True:
|
108 |
+
data = stream.read(4000, exception_on_overflow=False)
|
109 |
+
|
110 |
+
if recognizer.AcceptWaveform(data):
|
111 |
+
result = recognizer.Result()
|
112 |
+
text = json.loads(result)["text"]
|
113 |
+
|
114 |
+
if "start listening" in text.lower():
|
115 |
+
is_listening = True
|
116 |
+
print("Listening started. Speak into the microphone.")
|
117 |
+
continue
|
118 |
+
elif "stop listening" in text.lower():
|
119 |
+
is_listening = False
|
120 |
+
print("Listening stopped.")
|
121 |
+
if current_chunk:
|
122 |
+
chunk_text = " ".join(current_chunk)
|
123 |
+
sentiment, score = analyze_sentiment(chunk_text)
|
124 |
+
chunks.append((chunk_text, sentiment, score))
|
125 |
+
current_chunk = []
|
126 |
+
continue
|
127 |
+
|
128 |
+
if is_listening and text.strip():
|
129 |
+
print(f"Transcription: {text}")
|
130 |
+
current_chunk.append(text)
|
131 |
+
|
132 |
+
if time.time() - chunk_start_time > 3:
|
133 |
+
if current_chunk:
|
134 |
+
chunk_text = " ".join(current_chunk)
|
135 |
+
|
136 |
+
# Always process sentiment
|
137 |
+
sentiment, score = analyze_sentiment(chunk_text)
|
138 |
+
chunks.append((chunk_text, sentiment, score))
|
139 |
+
|
140 |
+
# Get objection responses and check similarity score
|
141 |
+
query_embedding = model.encode([chunk_text])
|
142 |
+
distances, indices = objection_handler.index.search(query_embedding, 1)
|
143 |
+
|
144 |
+
# If similarity is high enough, show objection response
|
145 |
+
if distances[0][0] < 1.5: # Threshold for similarity
|
146 |
+
responses = objection_handler.handle_objection(chunk_text)
|
147 |
+
if responses:
|
148 |
+
print("\nSuggested Response:")
|
149 |
+
for response in responses:
|
150 |
+
print(f"→ {response}")
|
151 |
+
|
152 |
+
# Get product recommendations and check similarity score
|
153 |
+
distances, indices = product_recommender.index.search(query_embedding, 1)
|
154 |
+
|
155 |
+
# If similarity is high enough, show recommendations
|
156 |
+
if distances[0][0] < 1.5: # Threshold for similarity
|
157 |
+
recommendations = product_recommender.get_recommendations(chunk_text)
|
158 |
+
if recommendations:
|
159 |
+
print(f"\nRecommendations for this response:")
|
160 |
+
for idx, rec in enumerate(recommendations, 1):
|
161 |
+
print(f"{idx}. {rec}")
|
162 |
+
|
163 |
+
print("\n")
|
164 |
+
current_chunk = []
|
165 |
+
chunk_start_time = time.time()
|
166 |
+
|
167 |
+
except KeyboardInterrupt:
|
168 |
+
print("\nExiting...")
|
169 |
+
stream.stop_stream()
|
170 |
+
|
171 |
+
return chunks
|
172 |
+
|
173 |
+
if __name__ == "__main__":
|
174 |
+
objections_file_path = r"C:\Users\shaik\Downloads\Sales Calls Transcriptions - Sheet3.csv"
|
175 |
+
objections_dict = load_objections(objections_file_path)
|
176 |
+
transcribed_chunks = transcribe_with_chunks(objections_dict)
|
177 |
print("Final transcriptions and sentiments:", transcribed_chunks)
|