File size: 6,148 Bytes
ccc693c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch

from segment_anything import sam_model_registry
from segment_anything.utils.onnx import SamOnnxModel

import argparse
import warnings

try:
    import onnxruntime  # type: ignore

    onnxruntime_exists = True
except ImportError:
    onnxruntime_exists = False

parser = argparse.ArgumentParser(
    description="Export the SAM prompt encoder and mask decoder to an ONNX model."
)

parser.add_argument(
    "--checkpoint", type=str, required=True, help="The path to the SAM model checkpoint."
)

parser.add_argument(
    "--output", type=str, required=True, help="The filename to save the ONNX model to."
)

parser.add_argument(
    "--model-type",
    type=str,
    required=True,
    help="In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.",
)

parser.add_argument(
    "--return-single-mask",
    action="store_true",
    help=(
        "If true, the exported ONNX model will only return the best mask, "
        "instead of returning multiple masks. For high resolution images "
        "this can improve runtime when upscaling masks is expensive."
    ),
)

parser.add_argument(
    "--opset",
    type=int,
    default=17,
    help="The ONNX opset version to use. Must be >=11",
)

parser.add_argument(
    "--quantize-out",
    type=str,
    default=None,
    help=(
        "If set, will quantize the model and save it with this name. "
        "Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
    ),
)

parser.add_argument(
    "--gelu-approximate",
    action="store_true",
    help=(
        "Replace GELU operations with approximations using tanh. Useful "
        "for some runtimes that have slow or unimplemented erf ops, used in GELU."
    ),
)

parser.add_argument(
    "--use-stability-score",
    action="store_true",
    help=(
        "Replaces the model's predicted mask quality score with the stability "
        "score calculated on the low resolution masks using an offset of 1.0. "
    ),
)

parser.add_argument(
    "--return-extra-metrics",
    action="store_true",
    help=(
        "The model will return five results: (masks, scores, stability_scores, "
        "areas, low_res_logits) instead of the usual three. This can be "
        "significantly slower for high resolution outputs."
    ),
)


def run_export(
    model_type: str,
    checkpoint: str,
    output: str,
    opset: int,
    return_single_mask: bool,
    gelu_approximate: bool = False,
    use_stability_score: bool = False,
    return_extra_metrics=False,
):
    print("Loading model...")
    sam = sam_model_registry[model_type](checkpoint=checkpoint)

    onnx_model = SamOnnxModel(
        model=sam,
        return_single_mask=return_single_mask,
        use_stability_score=use_stability_score,
        return_extra_metrics=return_extra_metrics,
    )

    if gelu_approximate:
        for n, m in onnx_model.named_modules():
            if isinstance(m, torch.nn.GELU):
                m.approximate = "tanh"

    dynamic_axes = {
        "point_coords": {1: "num_points"},
        "point_labels": {1: "num_points"},
    }

    embed_dim = sam.prompt_encoder.embed_dim
    embed_size = sam.prompt_encoder.image_embedding_size
    mask_input_size = [4 * x for x in embed_size]
    dummy_inputs = {
        "image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),
        "point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),
        "point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),
        "mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float),
        "has_mask_input": torch.tensor([1], dtype=torch.float),
        "orig_im_size": torch.tensor([1500, 2250], dtype=torch.float),
    }

    _ = onnx_model(**dummy_inputs)

    output_names = ["masks", "iou_predictions", "low_res_masks"]

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
        warnings.filterwarnings("ignore", category=UserWarning)
        with open(output, "wb") as f:
            print(f"Exporing onnx model to {output}...")
            torch.onnx.export(
                onnx_model,
                tuple(dummy_inputs.values()),
                f,
                export_params=True,
                verbose=False,
                opset_version=opset,
                do_constant_folding=True,
                input_names=list(dummy_inputs.keys()),
                output_names=output_names,
                dynamic_axes=dynamic_axes,
            )

    if onnxruntime_exists:
        ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()}
        ort_session = onnxruntime.InferenceSession(output)
        _ = ort_session.run(None, ort_inputs)
        print("Model has successfully been run with ONNXRuntime.")


def to_numpy(tensor):
    return tensor.cpu().numpy()


if __name__ == "__main__":
    args = parser.parse_args()
    run_export(
        model_type=args.model_type,
        checkpoint=args.checkpoint,
        output=args.output,
        opset=args.opset,
        return_single_mask=args.return_single_mask,
        gelu_approximate=args.gelu_approximate,
        use_stability_score=args.use_stability_score,
        return_extra_metrics=args.return_extra_metrics,
    )

    if args.quantize_out is not None:
        assert onnxruntime_exists, "onnxruntime is required to quantize the model."
        from onnxruntime.quantization import QuantType  # type: ignore
        from onnxruntime.quantization.quantize import quantize_dynamic  # type: ignore

        print(f"Quantizing model and writing to {args.quantize_out}...")
        quantize_dynamic(
            model_input=args.output,
            model_output=args.quantize_out,
            optimize_model=True,
            per_channel=False,
            reduce_range=False,
            weight_type=QuantType.QUInt8,
        )
        print("Done!")