Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from networks.layers.basic import ConvGN | |
class FPNSegmentationHead(nn.Module): | |
def __init__(self, | |
in_dim, | |
out_dim, | |
decode_intermediate_input=True, | |
hidden_dim=256, | |
shortcut_dims=[24, 32, 96, 1280], | |
align_corners=True): | |
super().__init__() | |
self.align_corners = align_corners | |
self.decode_intermediate_input = decode_intermediate_input | |
self.conv_in = ConvGN(in_dim, hidden_dim, 1) | |
self.conv_16x = ConvGN(hidden_dim, hidden_dim, 3) | |
self.conv_8x = ConvGN(hidden_dim, hidden_dim // 2, 3) | |
self.conv_4x = ConvGN(hidden_dim // 2, hidden_dim // 2, 3) | |
self.adapter_16x = nn.Conv2d(shortcut_dims[-2], hidden_dim, 1) | |
self.adapter_8x = nn.Conv2d(shortcut_dims[-3], hidden_dim, 1) | |
self.adapter_4x = nn.Conv2d(shortcut_dims[-4], hidden_dim // 2, 1) | |
self.conv_out = nn.Conv2d(hidden_dim // 2, out_dim, 1) | |
self._init_weight() | |
def forward(self, inputs, shortcuts): | |
if self.decode_intermediate_input: | |
x = torch.cat(inputs, dim=1) | |
else: | |
x = inputs[-1] | |
x = F.relu_(self.conv_in(x)) | |
x = F.relu_(self.conv_16x(self.adapter_16x(shortcuts[-2]) + x)) | |
x = F.interpolate(x, | |
size=shortcuts[-3].size()[-2:], | |
mode="bilinear", | |
align_corners=self.align_corners) | |
x = F.relu_(self.conv_8x(self.adapter_8x(shortcuts[-3]) + x)) | |
x = F.interpolate(x, | |
size=shortcuts[-4].size()[-2:], | |
mode="bilinear", | |
align_corners=self.align_corners) | |
x = F.relu_(self.conv_4x(self.adapter_4x(shortcuts[-4]) + x)) | |
x = self.conv_out(x) | |
return x | |
def _init_weight(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |