Spaces:
Sleeping
Sleeping
import os | |
import time | |
import json | |
import datetime as datetime | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.distributed as dist | |
from torch.utils.data import DataLoader | |
from torchvision import transforms | |
from dataloaders.train_datasets import DAVIS2017_Train, YOUTUBEVOS_Train, StaticTrain, TEST | |
import dataloaders.video_transforms as tr | |
from utils.meters import AverageMeter | |
from utils.image import label2colormap, masked_image, save_image | |
from utils.checkpoint import load_network_and_optimizer, load_network, save_network | |
from utils.learning import adjust_learning_rate, get_trainable_params | |
from utils.metric import pytorch_iou | |
from utils.ema import ExponentialMovingAverage, get_param_buffer_for_ema | |
from networks.models import build_vos_model | |
from networks.engines import build_engine | |
class Trainer(object): | |
def __init__(self, rank, cfg, enable_amp=True): | |
self.gpu = rank + cfg.DIST_START_GPU | |
self.gpu_num = cfg.TRAIN_GPUS | |
self.rank = rank | |
self.cfg = cfg | |
self.print_log("Exp {}:".format(cfg.EXP_NAME)) | |
self.print_log(json.dumps(cfg.__dict__, indent=4, sort_keys=True)) | |
print("Use GPU {} for training VOS.".format(self.gpu)) | |
torch.cuda.set_device(self.gpu) | |
torch.backends.cudnn.benchmark = True if cfg.DATA_RANDOMCROP[ | |
0] == cfg.DATA_RANDOMCROP[ | |
1] and 'swin' not in cfg.MODEL_ENCODER else False | |
self.print_log('Build VOS model.') | |
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(self.gpu) | |
self.model_encoder = self.model.encoder | |
self.engine = build_engine( | |
cfg.MODEL_ENGINE, | |
'train', | |
aot_model=self.model, | |
gpu_id=self.gpu, | |
long_term_mem_gap=cfg.TRAIN_LONG_TERM_MEM_GAP) | |
if cfg.MODEL_FREEZE_BACKBONE: | |
for param in self.model_encoder.parameters(): | |
param.requires_grad = False | |
if cfg.DIST_ENABLE: | |
dist.init_process_group(backend=cfg.DIST_BACKEND, | |
init_method=cfg.DIST_URL, | |
world_size=cfg.TRAIN_GPUS, | |
rank=rank, | |
timeout=datetime.timedelta(seconds=300)) | |
self.model.encoder = nn.SyncBatchNorm.convert_sync_batchnorm( | |
self.model.encoder).cuda(self.gpu) | |
self.dist_engine = torch.nn.parallel.DistributedDataParallel( | |
self.engine, | |
device_ids=[self.gpu], | |
output_device=self.gpu, | |
find_unused_parameters=True, | |
broadcast_buffers=False) | |
else: | |
self.dist_engine = self.engine | |
self.use_frozen_bn = False | |
if 'swin' in cfg.MODEL_ENCODER: | |
self.print_log('Use LN in Encoder!') | |
elif not cfg.MODEL_FREEZE_BN: | |
if cfg.DIST_ENABLE: | |
self.print_log('Use Sync BN in Encoder!') | |
else: | |
self.print_log('Use BN in Encoder!') | |
else: | |
self.use_frozen_bn = True | |
self.print_log('Use Frozen BN in Encoder!') | |
if self.rank == 0: | |
try: | |
total_steps = float(cfg.TRAIN_TOTAL_STEPS) | |
ema_decay = 1. - 1. / (total_steps * cfg.TRAIN_EMA_RATIO) | |
self.ema_params = get_param_buffer_for_ema( | |
self.model, update_buffer=(not cfg.MODEL_FREEZE_BN)) | |
self.ema = ExponentialMovingAverage(self.ema_params, | |
decay=ema_decay) | |
self.ema_dir = cfg.DIR_EMA_CKPT | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Error: failed to create EMA model!') | |
self.print_log('Build optimizer.') | |
trainable_params = get_trainable_params( | |
model=self.dist_engine, | |
base_lr=cfg.TRAIN_LR, | |
use_frozen_bn=self.use_frozen_bn, | |
weight_decay=cfg.TRAIN_WEIGHT_DECAY, | |
exclusive_wd_dict=cfg.TRAIN_WEIGHT_DECAY_EXCLUSIVE, | |
no_wd_keys=cfg.TRAIN_WEIGHT_DECAY_EXEMPTION) | |
if cfg.TRAIN_OPT == 'sgd': | |
self.optimizer = optim.SGD(trainable_params, | |
lr=cfg.TRAIN_LR, | |
momentum=cfg.TRAIN_SGD_MOMENTUM, | |
nesterov=True) | |
else: | |
self.optimizer = optim.AdamW(trainable_params, | |
lr=cfg.TRAIN_LR, | |
weight_decay=cfg.TRAIN_WEIGHT_DECAY) | |
self.enable_amp = enable_amp | |
if enable_amp: | |
self.scaler = torch.cuda.amp.GradScaler() | |
else: | |
self.scaler = None | |
self.prepare_dataset() | |
self.process_pretrained_model() | |
if cfg.TRAIN_TBLOG and self.rank == 0: | |
from tensorboardX import SummaryWriter | |
self.tblogger = SummaryWriter(cfg.DIR_TB_LOG) | |
def process_pretrained_model(self): | |
cfg = self.cfg | |
self.step = cfg.TRAIN_START_STEP | |
self.epoch = 0 | |
if cfg.TRAIN_AUTO_RESUME: | |
ckpts = os.listdir(cfg.DIR_CKPT) | |
if len(ckpts) > 0: | |
ckpts = list( | |
map(lambda x: int(x.split('_')[-1].split('.')[0]), ckpts)) | |
ckpt = np.sort(ckpts)[-1] | |
cfg.TRAIN_RESUME = True | |
cfg.TRAIN_RESUME_CKPT = ckpt | |
cfg.TRAIN_RESUME_STEP = ckpt | |
else: | |
cfg.TRAIN_RESUME = False | |
if cfg.TRAIN_RESUME: | |
if self.rank == 0: | |
try: | |
try: | |
ema_ckpt_dir = os.path.join( | |
self.ema_dir, | |
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT)) | |
ema_model, removed_dict = load_network( | |
self.model, ema_ckpt_dir, self.gpu) | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Try to use backup EMA checkpoint.') | |
DIR_RESULT = './backup/{}/{}'.format( | |
cfg.EXP_NAME, cfg.STAGE_NAME) | |
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt') | |
ema_ckpt_dir = os.path.join( | |
DIR_EMA_CKPT, | |
'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT)) | |
ema_model, removed_dict = load_network( | |
self.model, ema_ckpt_dir, self.gpu) | |
if len(removed_dict) > 0: | |
self.print_log( | |
'Remove {} from EMA model.'.format(removed_dict)) | |
ema_decay = self.ema.decay | |
del (self.ema) | |
ema_params = get_param_buffer_for_ema( | |
ema_model, update_buffer=(not cfg.MODEL_FREEZE_BN)) | |
self.ema = ExponentialMovingAverage(ema_params, | |
decay=ema_decay) | |
self.ema.num_updates = cfg.TRAIN_RESUME_CKPT | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Error: EMA model not found!') | |
try: | |
resume_ckpt = os.path.join( | |
cfg.DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT)) | |
self.model, self.optimizer, removed_dict = load_network_and_optimizer( | |
self.model, | |
self.optimizer, | |
resume_ckpt, | |
self.gpu, | |
scaler=self.scaler) | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Try to use backup checkpoint.') | |
DIR_RESULT = './backup/{}/{}'.format(cfg.EXP_NAME, | |
cfg.STAGE_NAME) | |
DIR_CKPT = os.path.join(DIR_RESULT, 'ckpt') | |
resume_ckpt = os.path.join( | |
DIR_CKPT, 'save_step_%s.pth' % (cfg.TRAIN_RESUME_CKPT)) | |
self.model, self.optimizer, removed_dict = load_network_and_optimizer( | |
self.model, | |
self.optimizer, | |
resume_ckpt, | |
self.gpu, | |
scaler=self.scaler) | |
if len(removed_dict) > 0: | |
self.print_log( | |
'Remove {} from checkpoint.'.format(removed_dict)) | |
self.step = cfg.TRAIN_RESUME_STEP | |
if cfg.TRAIN_TOTAL_STEPS <= self.step: | |
self.print_log("Your training has finished!") | |
exit() | |
self.epoch = int(np.ceil(self.step / len(self.train_loader))) | |
self.print_log('Resume from step {}'.format(self.step)) | |
elif cfg.PRETRAIN: | |
if cfg.PRETRAIN_FULL: | |
try: | |
self.model, removed_dict = load_network( | |
self.model, cfg.PRETRAIN_MODEL, self.gpu) | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Try to use backup EMA checkpoint.') | |
DIR_RESULT = './backup/{}/{}'.format( | |
cfg.EXP_NAME, cfg.STAGE_NAME) | |
DIR_EMA_CKPT = os.path.join(DIR_RESULT, 'ema_ckpt') | |
PRETRAIN_MODEL = os.path.join( | |
DIR_EMA_CKPT, | |
cfg.PRETRAIN_MODEL.split('/')[-1]) | |
self.model, removed_dict = load_network( | |
self.model, PRETRAIN_MODEL, self.gpu) | |
if len(removed_dict) > 0: | |
self.print_log('Remove {} from pretrained model.'.format( | |
removed_dict)) | |
self.print_log('Load pretrained VOS model from {}.'.format( | |
cfg.PRETRAIN_MODEL)) | |
else: | |
model_encoder, removed_dict = load_network( | |
self.model_encoder, cfg.PRETRAIN_MODEL, self.gpu) | |
if len(removed_dict) > 0: | |
self.print_log('Remove {} from pretrained model.'.format( | |
removed_dict)) | |
self.print_log( | |
'Load pretrained backbone model from {}.'.format( | |
cfg.PRETRAIN_MODEL)) | |
def prepare_dataset(self): | |
cfg = self.cfg | |
self.enable_prev_frame = cfg.TRAIN_ENABLE_PREV_FRAME | |
self.print_log('Process dataset...') | |
if cfg.TRAIN_AUG_TYPE == 'v1': | |
composed_transforms = transforms.Compose([ | |
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR, | |
cfg.DATA_MAX_SCALE_FACTOR, | |
cfg.DATA_SHORT_EDGE_LEN), | |
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP, | |
max_obj_num=cfg.MODEL_MAX_OBJ_NUM), | |
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP), | |
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True), | |
tr.ToTensor() | |
]) | |
elif cfg.TRAIN_AUG_TYPE == 'v2': | |
composed_transforms = transforms.Compose([ | |
tr.RandomScale(cfg.DATA_MIN_SCALE_FACTOR, | |
cfg.DATA_MAX_SCALE_FACTOR, | |
cfg.DATA_SHORT_EDGE_LEN), | |
tr.BalancedRandomCrop(cfg.DATA_RANDOMCROP, | |
max_obj_num=cfg.MODEL_MAX_OBJ_NUM), | |
tr.RandomColorJitter(), | |
tr.RandomGrayScale(), | |
tr.RandomGaussianBlur(), | |
tr.RandomHorizontalFlip(cfg.DATA_RANDOMFLIP), | |
tr.Resize(cfg.DATA_RANDOMCROP, use_padding=True), | |
tr.ToTensor() | |
]) | |
else: | |
assert NotImplementedError | |
train_datasets = [] | |
if 'static' in cfg.DATASETS: | |
pretrain_vos_dataset = StaticTrain( | |
cfg.DIR_STATIC, | |
cfg.DATA_RANDOMCROP, | |
seq_len=cfg.DATA_SEQ_LEN, | |
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB, | |
max_obj_n=cfg.MODEL_MAX_OBJ_NUM, | |
aug_type=cfg.TRAIN_AUG_TYPE) | |
train_datasets.append(pretrain_vos_dataset) | |
self.enable_prev_frame = False | |
if 'davis2017' in cfg.DATASETS: | |
train_davis_dataset = DAVIS2017_Train( | |
root=cfg.DIR_DAVIS, | |
full_resolution=cfg.TRAIN_DATASET_FULL_RESOLUTION, | |
transform=composed_transforms, | |
repeat_time=cfg.DATA_DAVIS_REPEAT, | |
seq_len=cfg.DATA_SEQ_LEN, | |
rand_gap=cfg.DATA_RANDOM_GAP_DAVIS, | |
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ, | |
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB, | |
enable_prev_frame=self.enable_prev_frame, | |
max_obj_n=cfg.MODEL_MAX_OBJ_NUM) | |
train_datasets.append(train_davis_dataset) | |
if 'youtubevos' in cfg.DATASETS: | |
train_ytb_dataset = YOUTUBEVOS_Train( | |
root=cfg.DIR_YTB, | |
transform=composed_transforms, | |
seq_len=cfg.DATA_SEQ_LEN, | |
rand_gap=cfg.DATA_RANDOM_GAP_YTB, | |
rand_reverse=cfg.DATA_RANDOM_REVERSE_SEQ, | |
merge_prob=cfg.DATA_DYNAMIC_MERGE_PROB, | |
enable_prev_frame=self.enable_prev_frame, | |
max_obj_n=cfg.MODEL_MAX_OBJ_NUM) | |
train_datasets.append(train_ytb_dataset) | |
if 'test' in cfg.DATASETS: | |
test_dataset = TEST(transform=composed_transforms, | |
seq_len=cfg.DATA_SEQ_LEN) | |
train_datasets.append(test_dataset) | |
if len(train_datasets) > 1: | |
train_dataset = torch.utils.data.ConcatDataset(train_datasets) | |
elif len(train_datasets) == 1: | |
train_dataset = train_datasets[0] | |
else: | |
self.print_log('No dataset!') | |
exit(0) | |
self.train_sampler = torch.utils.data.distributed.DistributedSampler( | |
train_dataset) if self.cfg.DIST_ENABLE else None | |
self.train_loader = DataLoader(train_dataset, | |
batch_size=int(cfg.TRAIN_BATCH_SIZE / | |
cfg.TRAIN_GPUS), | |
shuffle=False if self.cfg.DIST_ENABLE else True, | |
num_workers=cfg.DATA_WORKERS, | |
pin_memory=True, | |
sampler=self.train_sampler, | |
drop_last=True, | |
prefetch_factor=4) | |
self.print_log('Done!') | |
def sequential_training(self): | |
cfg = self.cfg | |
if self.enable_prev_frame: | |
frame_names = ['Ref', 'Prev'] | |
else: | |
frame_names = ['Ref(Prev)'] | |
for i in range(cfg.DATA_SEQ_LEN - 1): | |
frame_names.append('Curr{}'.format(i + 1)) | |
seq_len = len(frame_names) | |
running_losses = [] | |
running_ious = [] | |
for _ in range(seq_len): | |
running_losses.append(AverageMeter()) | |
running_ious.append(AverageMeter()) | |
batch_time = AverageMeter() | |
avg_obj = AverageMeter() | |
optimizer = self.optimizer | |
model = self.dist_engine | |
train_sampler = self.train_sampler | |
train_loader = self.train_loader | |
step = self.step | |
epoch = self.epoch | |
max_itr = cfg.TRAIN_TOTAL_STEPS | |
start_seq_training_step = int(cfg.TRAIN_SEQ_TRAINING_START_RATIO * | |
max_itr) | |
use_prev_prob = cfg.MODEL_USE_PREV_PROB | |
self.print_log('Start training:') | |
model.train() | |
while step < cfg.TRAIN_TOTAL_STEPS: | |
if self.cfg.DIST_ENABLE: | |
train_sampler.set_epoch(epoch) | |
epoch += 1 | |
last_time = time.time() | |
for frame_idx, sample in enumerate(train_loader): | |
if step > cfg.TRAIN_TOTAL_STEPS: | |
break | |
if step % cfg.TRAIN_TBLOG_STEP == 0 and self.rank == 0 and cfg.TRAIN_TBLOG: | |
tf_board = True | |
else: | |
tf_board = False | |
if step >= start_seq_training_step: | |
use_prev_pred = True | |
freeze_params = cfg.TRAIN_SEQ_TRAINING_FREEZE_PARAMS | |
else: | |
use_prev_pred = False | |
freeze_params = [] | |
if step % cfg.TRAIN_LR_UPDATE_STEP == 0: | |
now_lr = adjust_learning_rate( | |
optimizer=optimizer, | |
base_lr=cfg.TRAIN_LR, | |
p=cfg.TRAIN_LR_POWER, | |
itr=step, | |
max_itr=max_itr, | |
restart=cfg.TRAIN_LR_RESTART, | |
warm_up_steps=cfg.TRAIN_LR_WARM_UP_RATIO * max_itr, | |
is_cosine_decay=cfg.TRAIN_LR_COSINE_DECAY, | |
min_lr=cfg.TRAIN_LR_MIN, | |
encoder_lr_ratio=cfg.TRAIN_LR_ENCODER_RATIO, | |
freeze_params=freeze_params) | |
ref_imgs = sample['ref_img'] # batch_size * 3 * h * w | |
prev_imgs = sample['prev_img'] | |
curr_imgs = sample['curr_img'] | |
ref_labels = sample['ref_label'] # batch_size * 1 * h * w | |
prev_labels = sample['prev_label'] | |
curr_labels = sample['curr_label'] | |
obj_nums = sample['meta']['obj_num'] | |
bs, _, h, w = curr_imgs[0].size() | |
ref_imgs = ref_imgs.cuda(self.gpu, non_blocking=True) | |
prev_imgs = prev_imgs.cuda(self.gpu, non_blocking=True) | |
curr_imgs = [ | |
curr_img.cuda(self.gpu, non_blocking=True) | |
for curr_img in curr_imgs | |
] | |
ref_labels = ref_labels.cuda(self.gpu, non_blocking=True) | |
prev_labels = prev_labels.cuda(self.gpu, non_blocking=True) | |
curr_labels = [ | |
curr_label.cuda(self.gpu, non_blocking=True) | |
for curr_label in curr_labels | |
] | |
obj_nums = list(obj_nums) | |
obj_nums = [int(obj_num) for obj_num in obj_nums] | |
batch_size = ref_imgs.size(0) | |
all_frames = torch.cat([ref_imgs, prev_imgs] + curr_imgs, | |
dim=0) | |
all_labels = torch.cat([ref_labels, prev_labels] + curr_labels, | |
dim=0) | |
self.engine.restart_engine(batch_size, True) | |
optimizer.zero_grad(set_to_none=True) | |
if self.enable_amp: | |
with torch.cuda.amp.autocast(enabled=True): | |
loss, all_pred, all_loss, boards = model( | |
all_frames, | |
all_labels, | |
batch_size, | |
use_prev_pred=use_prev_pred, | |
obj_nums=obj_nums, | |
step=step, | |
tf_board=tf_board, | |
enable_prev_frame=self.enable_prev_frame, | |
use_prev_prob=use_prev_prob) | |
loss = torch.mean(loss) | |
start = time.time() | |
self.scaler.scale(loss).backward() | |
end = time.time() | |
print(end-start) | |
self.scaler.unscale_(optimizer) | |
torch.nn.utils.clip_grad_norm_(model.parameters(), | |
cfg.TRAIN_CLIP_GRAD_NORM) | |
self.scaler.step(optimizer) | |
self.scaler.update() | |
else: | |
loss, all_pred, all_loss, boards = model( | |
all_frames, | |
all_labels, | |
ref_imgs.size(0), | |
use_prev_pred=use_prev_pred, | |
obj_nums=obj_nums, | |
step=step, | |
tf_board=tf_board, | |
enable_prev_frame=self.enable_prev_frame, | |
use_prev_prob=use_prev_prob) | |
loss = torch.mean(loss) | |
torch.nn.utils.clip_grad_norm_(model.parameters(), | |
cfg.TRAIN_CLIP_GRAD_NORM) | |
loss.backward() | |
optimizer.step() | |
for idx in range(seq_len): | |
now_pred = all_pred[idx].detach() | |
now_label = all_labels[idx * bs:(idx + 1) * bs].detach() | |
now_loss = torch.mean(all_loss[idx].detach()) | |
now_iou = pytorch_iou(now_pred.unsqueeze(1), now_label, | |
obj_nums) * 100 | |
if self.cfg.DIST_ENABLE: | |
dist.all_reduce(now_loss) | |
dist.all_reduce(now_iou) | |
now_loss /= self.gpu_num | |
now_iou /= self.gpu_num | |
if self.rank == 0: | |
running_losses[idx].update(now_loss.item()) | |
running_ious[idx].update(now_iou.item()) | |
if self.rank == 0: | |
self.ema.update(self.ema_params) | |
avg_obj.update(sum(obj_nums) / float(len(obj_nums))) | |
curr_time = time.time() | |
batch_time.update(curr_time - last_time) | |
last_time = curr_time | |
if step % cfg.TRAIN_TBLOG_STEP == 0: | |
all_f = [ref_imgs, prev_imgs] + curr_imgs | |
self.process_log(ref_imgs, all_f[-2], all_f[-1], | |
ref_labels, all_pred[-2], now_label, | |
now_pred, boards, running_losses, | |
running_ious, now_lr, step) | |
if step % cfg.TRAIN_LOG_STEP == 0: | |
strs = 'I:{}, LR:{:.5f}, T:{:.1f}({:.1f})s, Obj:{:.1f}({:.1f})'.format( | |
step, now_lr, batch_time.val, | |
batch_time.moving_avg, avg_obj.val, | |
avg_obj.moving_avg) | |
batch_time.reset() | |
avg_obj.reset() | |
for idx in range(seq_len): | |
strs += ', {}: L {:.3f}({:.3f}) IoU {:.1f}({:.1f})%'.format( | |
frame_names[idx], running_losses[idx].val, | |
running_losses[idx].moving_avg, | |
running_ious[idx].val, | |
running_ious[idx].moving_avg) | |
running_losses[idx].reset() | |
running_ious[idx].reset() | |
self.print_log(strs) | |
step += 1 | |
if step % cfg.TRAIN_SAVE_STEP == 0 and self.rank == 0: | |
max_mem = torch.cuda.max_memory_allocated( | |
device=self.gpu) / (1024.**3) | |
ETA = str( | |
datetime.timedelta( | |
seconds=int(batch_time.moving_avg * | |
(cfg.TRAIN_TOTAL_STEPS - step)))) | |
self.print_log('ETA: {}, Max Mem: {:.2f}G.'.format( | |
ETA, max_mem)) | |
self.print_log('Save CKPT (Step {}).'.format(step)) | |
save_network(self.model, | |
optimizer, | |
step, | |
cfg.DIR_CKPT, | |
cfg.TRAIN_MAX_KEEP_CKPT, | |
backup_dir='./backup/{}/{}/ckpt'.format( | |
cfg.EXP_NAME, cfg.STAGE_NAME), | |
scaler=self.scaler) | |
try: | |
torch.cuda.empty_cache() | |
# First save original parameters before replacing with EMA version | |
self.ema.store(self.ema_params) | |
# Copy EMA parameters to model | |
self.ema.copy_to(self.ema_params) | |
# Save EMA model | |
save_network( | |
self.model, | |
optimizer, | |
step, | |
self.ema_dir, | |
cfg.TRAIN_MAX_KEEP_CKPT, | |
backup_dir='./backup/{}/{}/ema_ckpt'.format( | |
cfg.EXP_NAME, cfg.STAGE_NAME), | |
scaler=self.scaler) | |
# Restore original parameters to resume training later | |
self.ema.restore(self.ema_params) | |
except Exception as inst: | |
self.print_log(inst) | |
self.print_log('Error: failed to save EMA model!') | |
self.print_log('Stop training!') | |
def print_log(self, string): | |
if self.rank == 0: | |
print(string) | |
def process_log(self, ref_imgs, prev_imgs, curr_imgs, ref_labels, | |
prev_labels, curr_labels, curr_pred, boards, | |
running_losses, running_ious, now_lr, step): | |
cfg = self.cfg | |
mean = np.array([[[0.485]], [[0.456]], [[0.406]]]) | |
sigma = np.array([[[0.229]], [[0.224]], [[0.225]]]) | |
show_ref_img, show_prev_img, show_curr_img = [ | |
img.cpu().numpy()[0] * sigma + mean | |
for img in [ref_imgs, prev_imgs, curr_imgs] | |
] | |
show_gt, show_prev_gt, show_ref_gt, show_preds_s = [ | |
label.cpu()[0].squeeze(0).numpy() | |
for label in [curr_labels, prev_labels, ref_labels, curr_pred] | |
] | |
show_gtf, show_prev_gtf, show_ref_gtf, show_preds_sf = [ | |
label2colormap(label).transpose((2, 0, 1)) | |
for label in [show_gt, show_prev_gt, show_ref_gt, show_preds_s] | |
] | |
if cfg.TRAIN_IMG_LOG or cfg.TRAIN_TBLOG: | |
show_ref_img = masked_image(show_ref_img, show_ref_gtf, | |
show_ref_gt) | |
if cfg.TRAIN_IMG_LOG: | |
save_image( | |
show_ref_img, | |
os.path.join(cfg.DIR_IMG_LOG, | |
'%06d_ref_img.jpeg' % (step))) | |
show_prev_img = masked_image(show_prev_img, show_prev_gtf, | |
show_prev_gt) | |
if cfg.TRAIN_IMG_LOG: | |
save_image( | |
show_prev_img, | |
os.path.join(cfg.DIR_IMG_LOG, | |
'%06d_prev_img.jpeg' % (step))) | |
show_img_pred = masked_image(show_curr_img, show_preds_sf, | |
show_preds_s) | |
if cfg.TRAIN_IMG_LOG: | |
save_image( | |
show_img_pred, | |
os.path.join(cfg.DIR_IMG_LOG, | |
'%06d_prediction.jpeg' % (step))) | |
show_curr_img = masked_image(show_curr_img, show_gtf, show_gt) | |
if cfg.TRAIN_IMG_LOG: | |
save_image( | |
show_curr_img, | |
os.path.join(cfg.DIR_IMG_LOG, | |
'%06d_groundtruth.jpeg' % (step))) | |
if cfg.TRAIN_TBLOG: | |
for seq_step, running_loss, running_iou in zip( | |
range(len(running_losses)), running_losses, | |
running_ious): | |
self.tblogger.add_scalar('S{}/Loss'.format(seq_step), | |
running_loss.avg, step) | |
self.tblogger.add_scalar('S{}/IoU'.format(seq_step), | |
running_iou.avg, step) | |
self.tblogger.add_scalar('LR', now_lr, step) | |
self.tblogger.add_image('Ref/Image', show_ref_img, step) | |
self.tblogger.add_image('Ref/GT', show_ref_gtf, step) | |
self.tblogger.add_image('Prev/Image', show_prev_img, step) | |
self.tblogger.add_image('Prev/GT', show_prev_gtf, step) | |
self.tblogger.add_image('Curr/Image_GT', show_curr_img, step) | |
self.tblogger.add_image('Curr/Image_Pred', show_img_pred, step) | |
self.tblogger.add_image('Curr/Mask_GT', show_gtf, step) | |
self.tblogger.add_image('Curr/Mask_Pred', show_preds_sf, step) | |
for key in boards['image'].keys(): | |
tmp = boards['image'][key].cpu().numpy() | |
self.tblogger.add_image('S{}/' + key, tmp, step) | |
for key in boards['scalar'].keys(): | |
tmp = boards['scalar'][key].cpu().numpy() | |
self.tblogger.add_scalar('S{}/' + key, tmp, step) | |
self.tblogger.flush() | |
del (boards) | |