Spaces:
Sleeping
Sleeping
import torch | |
from .resnet import ResNet, Bottleneck | |
__all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] | |
_url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' | |
_model_sha256 = { | |
name: checksum | |
for checksum, name in [ | |
('528c19ca', 'resnest50'), | |
('22405ba7', 'resnest101'), | |
('75117900', 'resnest200'), | |
('0cc87c48', 'resnest269'), | |
] | |
} | |
def short_hash(name): | |
if name not in _model_sha256: | |
raise ValueError( | |
'Pretrained model for {name} is not available.'.format(name=name)) | |
return _model_sha256[name][:8] | |
resnest_model_urls = { | |
name: _url_format.format(name, short_hash(name)) | |
for name in _model_sha256.keys() | |
} | |
def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): | |
model = ResNet(Bottleneck, [3, 4, 6, 3], | |
radix=2, | |
groups=1, | |
bottleneck_width=64, | |
deep_stem=True, | |
stem_width=32, | |
avg_down=True, | |
avd=True, | |
avd_first=False, | |
**kwargs) | |
if pretrained: | |
model.load_state_dict( | |
torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'], | |
progress=True, | |
check_hash=True)) | |
return model | |
def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): | |
model = ResNet(Bottleneck, [3, 4, 23, 3], | |
radix=2, | |
groups=1, | |
bottleneck_width=64, | |
deep_stem=True, | |
stem_width=64, | |
avg_down=True, | |
avd=True, | |
avd_first=False, | |
**kwargs) | |
if pretrained: | |
model.load_state_dict( | |
torch.hub.load_state_dict_from_url( | |
resnest_model_urls['resnest101'], | |
progress=True, | |
check_hash=True)) | |
return model | |
def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): | |
model = ResNet(Bottleneck, [3, 24, 36, 3], | |
radix=2, | |
groups=1, | |
bottleneck_width=64, | |
deep_stem=True, | |
stem_width=64, | |
avg_down=True, | |
avd=True, | |
avd_first=False, | |
**kwargs) | |
if pretrained: | |
model.load_state_dict( | |
torch.hub.load_state_dict_from_url( | |
resnest_model_urls['resnest200'], | |
progress=True, | |
check_hash=True)) | |
return model | |
def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): | |
model = ResNet(Bottleneck, [3, 30, 48, 8], | |
radix=2, | |
groups=1, | |
bottleneck_width=64, | |
deep_stem=True, | |
stem_width=64, | |
avg_down=True, | |
avd=True, | |
avd_first=False, | |
**kwargs) | |
if pretrained: | |
model.load_state_dict( | |
torch.hub.load_state_dict_from_url( | |
resnest_model_urls['resnest269'], | |
progress=True, | |
check_hash=True)) | |
return model | |