Spaces:
Runtime error
Runtime error
Zengyf-CVer
commited on
Commit
·
c973154
1
Parent(s):
80cc235
v04 update
Browse files
app.py
CHANGED
@@ -133,10 +133,16 @@ def yaml_csv(file_path, file_tag):
|
|
133 |
|
134 |
|
135 |
# model loading
|
136 |
-
def model_loading(model_name, device):
|
137 |
|
138 |
# load model
|
139 |
-
model = torch.hub.load(
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
return model
|
142 |
|
@@ -186,6 +192,7 @@ def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt, obj_cls_index,
|
|
186 |
return img
|
187 |
|
188 |
|
|
|
189 |
def color_set(cls_num):
|
190 |
color_list = []
|
191 |
for i in range(cls_num):
|
@@ -211,10 +218,10 @@ def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_
|
|
211 |
if model_name_tmp != model_name:
|
212 |
# Model judgment to avoid repeated loading
|
213 |
model_name_tmp = model_name
|
214 |
-
model = model_loading(model_name_tmp, device)
|
215 |
elif device_tmp != device:
|
216 |
device_tmp = device
|
217 |
-
model = model_loading(model_name_tmp, device)
|
218 |
|
219 |
# -------------Model tuning -------------
|
220 |
model.conf = conf # NMS confidence threshold
|
@@ -343,10 +350,10 @@ def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, mo
|
|
343 |
if model_name_tmp != model_name:
|
344 |
# Model judgment to avoid repeated loading
|
345 |
model_name_tmp = model_name
|
346 |
-
model = model_loading(model_name_tmp, device)
|
347 |
elif device_tmp != device:
|
348 |
device_tmp = device
|
349 |
-
model = model_loading(model_name_tmp, device)
|
350 |
|
351 |
# -------------Model tuning -------------
|
352 |
model.conf = conf # NMS confidence threshold
|
@@ -472,7 +479,7 @@ def main(args):
|
|
472 |
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
473 |
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
474 |
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
475 |
-
inputs_opt01 = gr.CheckboxGroup(choices=["label", "pdf", "json"],
|
476 |
value=["label", "pdf"],
|
477 |
type="value",
|
478 |
label="operate")
|
@@ -486,7 +493,7 @@ def main(args):
|
|
486 |
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
487 |
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
488 |
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
489 |
-
inputs_opt02 = gr.CheckboxGroup(choices=["label"], value=["label"], type="value", label="operate")
|
490 |
|
491 |
# Input parameters
|
492 |
inputs_img_list = [
|
@@ -536,7 +543,7 @@ def main(args):
|
|
536 |
title = "Gradio YOLOv5 Det v0.4"
|
537 |
|
538 |
# describe
|
539 |
-
description = "
|
540 |
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
|
541 |
|
542 |
# example image
|
|
|
133 |
|
134 |
|
135 |
# model loading
|
136 |
+
def model_loading(model_name, device, opt=["refresh_yolov5"]):
|
137 |
|
138 |
# load model
|
139 |
+
model = torch.hub.load(
|
140 |
+
model_path,
|
141 |
+
model_name,
|
142 |
+
force_reload=[True if "refresh_yolov5" in opt else False][0],
|
143 |
+
device=device,
|
144 |
+
_verbose=False
|
145 |
+
)
|
146 |
|
147 |
return model
|
148 |
|
|
|
192 |
return img
|
193 |
|
194 |
|
195 |
+
# Label and bounding box color settings
|
196 |
def color_set(cls_num):
|
197 |
color_list = []
|
198 |
for i in range(cls_num):
|
|
|
218 |
if model_name_tmp != model_name:
|
219 |
# Model judgment to avoid repeated loading
|
220 |
model_name_tmp = model_name
|
221 |
+
model = model_loading(model_name_tmp, device, opt)
|
222 |
elif device_tmp != device:
|
223 |
device_tmp = device
|
224 |
+
model = model_loading(model_name_tmp, device, opt)
|
225 |
|
226 |
# -------------Model tuning -------------
|
227 |
model.conf = conf # NMS confidence threshold
|
|
|
350 |
if model_name_tmp != model_name:
|
351 |
# Model judgment to avoid repeated loading
|
352 |
model_name_tmp = model_name
|
353 |
+
model = model_loading(model_name_tmp, device, opt)
|
354 |
elif device_tmp != device:
|
355 |
device_tmp = device
|
356 |
+
model = model_loading(model_name_tmp, device, opt)
|
357 |
|
358 |
# -------------Model tuning -------------
|
359 |
model.conf = conf # NMS confidence threshold
|
|
|
479 |
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
480 |
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
481 |
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
482 |
+
inputs_opt01 = gr.CheckboxGroup(choices=["label", "pdf", "json", "refresh_yolov5"],
|
483 |
value=["label", "pdf"],
|
484 |
type="value",
|
485 |
label="operate")
|
|
|
493 |
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
|
494 |
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
|
495 |
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
|
496 |
+
inputs_opt02 = gr.CheckboxGroup(choices=["label", "refresh_yolov5"], value=["label"], type="value", label="operate")
|
497 |
|
498 |
# Input parameters
|
499 |
inputs_img_list = [
|
|
|
543 |
title = "Gradio YOLOv5 Det v0.4"
|
544 |
|
545 |
# describe
|
546 |
+
description = "Author: 曾逸夫(Zeng Yifu), Project Address: https://gitee.com/CV_Lab/gradio_yolov5_det, Github: https://github.com/Zengyf-CVer, thanks to [Gradio](https://github.com/gradio-app/gradio) & [YOLOv5](https://github.com/ultralytics/yolov5)"
|
547 |
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
|
548 |
|
549 |
# example image
|